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Abstract
The effects of synchrotron radiation on particle motion in storage rings are
discussed. In the absence of radiation, particle motion is symplectic, and the
beam emittances are conserved. The inclusion of radiation effects in a classical
approximation leads to emittance damping: expressions for the damping times
are derived. Then, it is shown that quantum radiation effects lead to excitation
of the beam emittances. General expressions for the equilibrium longitudinal
and horizontal (natural) emittances are derived. The impact of lattice design
on the natural emittance is discussed, with particular attention to the special
cases of FODO-, achromat- and theoretical-minimum-emittance-style lattices.
Finally, the effects of betatron coupling and vertical dispersion (generated by
magnet alignment and lattice tuning errors) on the vertical emittance are con-
sidered.

1 Introduction
Beam emittance in a storage ring is an important parameter for characterizing machine performance. In
the case of a light source, for example, the brightness of the synchrotron radiation produced by a beam
of electrons is directly dependent on the horizontal and vertical emittances of the beam and is one of the
main figures of merit for users. Second generation light sources had natural emittances of order 100 nm.
Over the years, significant improvements in lattice designs have been achieved (see Fig. 1), motivated
largely by user requirements; third generation light sources now typically aim for natural emittances of
just a few nanometres. In the case of colliders for high-energy physics, one of the main figures of merit
is the luminosity, which is a measure of the rate of particle collisions. Lower emittances allow smaller
beam sizes at the interaction point, leading to higher particle density in the colliding bunches, and higher
luminosity for the same total number of particles in the beam.

There are of course ways of improving the brightness of a light source and the luminosity of a col-
lider without reducing the emittances: in both cases, for example, the beam current could be increased.
However, beam currents are generally limited by collective effects such as impedance-driven instabili-
ties, Touschek scattering or (for colliders) beam–beam effects. Designing and operating a storage ring
for maximum performance involves a good understanding and control of effects that impact the beam
emittances.

In this note, we shall consider the emittances of electron (and positron) storage rings: because
of synchrotron radiation effects, lepton storage rings are able to achieve very small emittances (of or-
der 1 nm horizontal emittance, and less than 10 pm vertical emittance). We shall begin in Section 2
by reviewing some of the key features of beam dynamics in the absence of synchrotron radiation. In
particular, an important property of the dynamics in such cases is that the particle motion is symplectic:
this has the consequence that the beam emittances (which characterize the phase-space volume occupied
by the particles in a beam) are conserved as the beam moves around the storage ring. We shall then
show that, in a classical approximation, radiation effects lead to damping of the emittances. We shall
derive expressions for the exponential damping times. Then, we shall discuss how quantum effects of
synchrotron radiation lead to excitation of the beam emittances. As a result, the emittances of beams in
electron (or positron) storage rings reach equilibrium values determined by the beam energy and lattice
design.
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Fig. 1: Natural emittance of a number of synchrotron light sources. Reductions in natural emittance have been
driven by the need to produce higher radiation beam brightness for users.

In Section 3, we shall apply the expression for the natural emittance derived in Section 2 to par-
ticular styles of lattice design. In particular, we shall consider FODO (focusing-drift-defocusing-drift),
double-bend achromat (DBA), theoretical minimum emittance (TME) and multibend achromat (MBA)
lattices. Double-bend achromats are of particular interest for light sources, because they achieve low
natural emittance (leading to high brightness) while providing long, dispersion-free (or low-dispersion)
straight sections that are ideal locations for insertion devices such as undulators or wigglers [1]. Insertion
devices are useful for providing intense beams of synchrotron radiation with specific properties.

In a planar storage ring, the vertical emittance is dominated by alignment and tuning errors, rather
than by the design of the lattice. In Section 4, we shall discuss how the vertical emittance is related
to a range of errors, including steering errors, tilt errors on quadrupoles and vertical alignment errors
on sextupoles. Betatron coupling and vertical dispersion are important features of the dynamics in this
context, and both will be discussed. Optimization of a lattice design for a low-emittance storage ring
will generally involve simulations to characterize the sensitivity of the vertical emittance to different
types of machine error. For this, techniques are needed for accurate computation of the equilibrium
emittances from models in which different errors can be included. We shall consider three techniques
that are widely used for emittance computation, discussing the envelope method in particular in some
detail. Finally, we shall mention briefly some of the issues associated with operational tuning of a storage
ring for low-emittance operation.

2 Beam dynamics with synchrotron radiation
In this section, we shall review the relevant aspects of beam dynamics needed for understanding the
effects of synchrotron radiation. Our focus will be on electron (or positron) synchrotron storage rings.
Initially, we shall neglect radiation effects; then, we shall include the emission of synchrotron radiation
as a perturbation to the motion of individual particles. This approach is valid if radiation effects are
relatively weak, which means that the energy lost by a particle through radiation in one synchrotron
period should be small compared to the total energy of the particle. This is almost invariably the case
for practical storage rings. We shall consider only incoherent synchrotron radiation; in other words,
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we shall assume that the motion of each particle and the radiation that it produces can be considered
independently of all other particles in the beam. In some regimes (including, for example, in free-
electron lasers) particles generate radiation coherently, leading to a strong enhancement of the radiation
produced by a beam. Generally, some special efforts are needed to achieve the generation of coherent
synchrotron radiation with sufficient intensity that it has a measurable impact on the beam; we shall not
discuss such situations here.

Briefly, we shall proceed as follows. The symplectic motion of particles in an accelerator (i.e. mo-
tion neglecting synchrotron radiation and collective effects) is conveniently described using action-angle
variables. We shall define these variables and use them to review the key features of particle motion in
synchrotron storage rings. We shall then include the effects of synchrotron radiation, initially in a classi-
cal approximation, leading to expressions for the energy lost per turn in a storage ring, and the damping
times for the horizontal, vertical and longitudinal emittances. Finally, we shall discuss the effects of
quantum excitation, and derive results for the equilibrium beam emittances. These results will be used
in Section 3, where we consider how the equilibrium emittances are affected by the lattice design in a
storage ring.

2.1 Symplectic motion
We work in a coordinate system based on a reference trajectory that we define for our own convenience
(see Fig. 2). The distance along the reference trajectory is specified by the independent variable s.
For simplicity, in a planar storage ring, the reference trajectory is generally chosen to be a straight line
(passing through the centres of all quadrupole and higher-order multipole magnets) everywhere except
in the dipoles. In the dipoles, the reference trajectory follows the arc of a circle with radius ρ, such that

Bρ =
P0

q
, (1)

where B is the dipole field, P0 is the reference momentum (i.e. the momentum of particles for which the
storage ring is designed) and q is the particle charge. Bρ is the beam rigidity.

At any point along the reference trajectory, the position of a particle is specified by the x and y
coordinates in a plane perpendicular to the reference trajectory. We follow the convention in which x is
the horizontal (transverse) coordinate and y is the vertical coordinate.

Fig. 2: Coordinate system in an accelerator beamline. The reference trajectory can be defined arbitrarily, but is
generally chosen so that it describes the trajectory of a particle with momentum equal to the reference momentum
P0. The distance along the reference trajectory is parametrized by the independent variable s. At any point
along the reference trajectory, the transverse position of a particle is specified by Cartesian coordinates in a plane
perpendicular to the reference trajectory.
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Fig. 3: Longitudinal coordinates in an accelerator beamline. The longitudinal coordinate z indicates the time that
a particle crosses a plane perpendicular to the reference trajectory at a position s along the reference trajectory.

To describe the motion of a particle, we need to give the components of the momentum of a
particle, as well as its coordinates. In the transverse directions (i.e. in a plane perpendicular to the
reference trajectory) we use the canonical momenta [2] scaled by the reference momentum P0:

px =
1

P0

(
γm

dx

dt
+ qAx

)
, (2)

py =
1

P0

(
γm

dy

dt
+ qAy

)
. (3)

Here, m and q are the mass and charge of the particle, γ is the relativistic factor for the particle
and Ax and Ay are the x and y components respectively of the electromagnetic vector potential. The
transverse dynamics is described by giving the transverse coordinates and momenta as functions of s (the
distance along the reference trajectory).

To describe the longitudinal dynamics of a particle, we use a longitudinal coordinate z defined by

z = β0c(t0 − t), (4)

where β0 is the normalized velocity of the particle with the reference momentum P0, t0 is the time at
which the reference particle is at a location s and t is the time at which the particle of interest arrives
at this location. Physically, the value of z for a particle is approximately equal to the distance along
the reference trajectory between the given particle and a reference particle travelling along the reference
trajectory with momentum P0 (see Fig. 3). A positive value for z means that the given particle arrives
at a particular location at an earlier time than the reference particle, i.e. the given particle is ahead of the
reference particle.

The final dynamical variable needed to describe the motion of a particle is the energy of the
particle. Rather than use the absolute energy or momentum, we use the energy deviation δ, which
provides a measure of the difference between the energy E of a particle and the energy of a particle with
the reference momentum P0:

δ =
E

P0c
− 1

β0
=

1

β0

(
γ

γ0
− 1

)
. (5)

Here, γ0 is the relativistic factor for a particle with momentum equal to the reference momentum. A
particle with momentum equal to the reference momentum has δ = 0.

Using the above definitions, the coordinates and momenta form canonical conjugate pairs:

(x, px), (y, py), (z, δ). (6)
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This means that (continuing to neglect radiation and collective effects) the equations of motion for parti-
cles in an accelerator beamline are given by Hamilton’s equations [2], with an appropriate Hamiltonian
that describes the electromagnetic fields along the beamline. In a linear approximation, the change in the
values of the variables when a particle moves along a beamline can be represented by a transfer matrix,
R: 



x
px
y
py
z
δ




s=s1

= R(s1; s0) ·




x
px
y
py
z
δ




s=s0

. (7)

It is a general property of Hamilton’s equations that the transfer matrix R is symplectic. Mathematically,
this means that R satisfies the relation

RTSR = S, (8)

where S is the antisymmetric matrix:

S =




0 1 0 0 0 0
−1 0 0 0 0 0
0 0 0 1 0 0
0 0 −1 0 0 0
0 0 0 0 0 1
0 0 0 0 −1 0



. (9)

The symplectic condition (8) imposes strong constraints on the dynamics. Physically, symplectic
matrices preserve volumes in phase space (this result is sometimes expressed as Liouville’s theorem [2]).
For example, for a linear transformation in one degree of freedom, a particular ellipse in x–px phase
space will be transformed to an ellipse with (in general) a different shape; but the area of the ellipse will
remain the same. The number of invariants associated with a linear symplectic transformation is at least
equal to the number of degrees of freedom in the system. Thus, for motion in three degrees of freedom,
there are at least three invariants. For particles in a beam in an accelerator beamline, the invariants are
associated with the emittances. If there is no coupling between the degrees of freedom (so that motion
in any direction x, y or z is independent of the motion in the other two directions), then we can associate
an emittance with each of the three coordinates, i.e. there is a horizontal emittance, a vertical emittance
and a longitudinal emittance. We shall give a more formal definition of the emittances shortly.

Consider a particle moving through a periodic beamline, without coupling (i.e. a beamline with
no skew quadrupoles or solenoids). After each periodic cell, we can plot the horizontal coordinate x and
the momentum px as a point in the horizontal phase space. After passing through many cells, observing
the particle always at the corresponding locations in successive cells, and assuming that the motion of
the particle is stable, we find that the points trace out an ellipse in phase space. The shape of the ellipse
defines the Courant–Snyder parameters [3] in the beamline at the observation point: see Fig. 4. The area
of the ellipse is a measure of the amplitude of the oscillations. We define the horizontal action Jx of the
particle such that the area of the ellipse is equal to πJx.

Applying simple geometry to the phase-space ellipse, we find that the action (for uncoupled mo-
tion) is related to the Cartesian variables for the particle by

2Jx = γxx
2 + 2αxxpx + βxp

2
x, (10)

where the Courant–Snyder parameters satisfy the relation

βxγx − α2
x = 1. (11)
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Fig. 4: Ellipse in phase space defined by plotting the coordinate x and the conjugate momentum px of a particle
after each pass through a unit cell in a periodic beamline. The shape of the ellipse is described by the Courant–
Snyder parameters αx, βx and γx; the area of the ellipse is πJx, where Jx is the action variable of the particle.
The shape of the ellipse changes depending on the chosen starting position within a unit cell; the action remains
the same for any given particle.

We define the horizontal angle variable φx as follows:

tanφx = −βx
px
x
− αx. (12)

For a particle with a particular action (i.e. on an ellipse with a given area), the angle variable specifies
the position of the particle around the ellipse. The action-angle variables [2] provide an alternative to
the Cartesian variables for describing the dynamics. Although we have not shown that this is the case,
the action-angle variables form a canonical conjugate pair: that is, the equations of motion expressed
in terms of the action-angle variables can be derived from Hamilton’s equations, using an appropriate
Hamiltonian (determined as before by the electromagnetic fields along the beamline). The advantage
of using action-angle variables to describe particle motion in an accelerator is that, under symplectic
transport (i.e. neglecting radiation and collective effects), the action of a particle is constant. We can of
course define vertical and (in a synchrotron storage ring) longitudinal action-angle variables in the same
way as we defined the horizontal action-angle variables.

The expressions for the action (10) and the angle (12) can be inverted, to give expressions for the
Cartesian coordinate and momentum in terms of Jx and φx:

x =
√

2βxJx cosφx, (13)

px = −
√

2Jx
βx

(sinφx + αx cosφx) . (14)

The emittance εx of a bunch of particles can be defined as the average action of all particles in the
bunch:

εx = 〈Jx〉. (15)
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For uncoupled motion, and assuming that the angle variables of different particles are uncorrelated, it
follows from (13) and (14) that the second-order moments of the particle distribution are related to the
Courant–Snyder parameters and the emittance:

〈x2〉 = βxεx, (16)

〈xpx〉 = −αxεx, (17)

〈p2x〉 = γxεx. (18)

Using (11), we then find that the emittance can be expressed in terms of the second-order moments as

ε2x = 〈x2〉〈p2x〉 − 〈xpx〉2. (19)

However, we stress that this relation holds only for uncoupled motion. The expression for the emittance
(15) can be generalized without too much difficulty to coupled motion (see for example [4]), leading to
normal mode emittances that are conserved under symplectic transport even where coupling is present.
However, the expression for the emittance (19) is less easily generalized to include coupling, and an
emittance that is defined by (19) will, in general, not be constant in a beamline where there is coupling.

2.2 Vertical damping by synchrotron radiation
So far, we have considered only symplectic transport, i.e. motion of a particle in drift spaces or in the
electromagnetic fields of dipoles, quadrupoles, RF cavities etc. without any radiation. However, we know
that a charged particle moving through an electromagnetic field will (in general) undergo acceleration,
and a charged particle undergoing acceleration will radiate energy in the form of electromagnetic waves.
We now address the question of the impact that this radiation will have on the motion of a particle in a
synchrotron storage ring. We shall consider first the case of uncoupled vertical motion: for a particle in
a storage ring, this turns out to be the simplest case. Since we are primarily interested in the dynamics
of the particles generating the radiation, we quote a number of results regarding the properties of the
radiation itself (rather than derive these results from first principles).

The first result that we quote for the properties of synchrotron radiation is that radiation from a
relativistic charged particle is emitted within a cone of opening angle 1/γ, where γ is the relativistic
factor for the particle [5]. The axis of the cone is tangent to the trajectory of the particle at the point
where the radiation is emitted. For an ultra-relativistic particle, γ � 1, and we can assume that the
radiation is emitted directly along the instantaneous direction of motion of the particle.

Consider a particle with initial momentum P ≈ P0 that emits radiation carrying momentum dP .
The momentum of the particle after emitting radiation is

P ′ = P − dP ≈ P
(

1− dP

P0

)
. (20)

Since there is no change in direction of the particle, the vertical component of the momentum must scale
in the same way as the total momentum of the particle:

p′y ≈ py
(

1− dP

P0

)
. (21)

Now we substitute this into the expression for the vertical betatron action (valid for uncoupled motion):

2Jy = γyy
2 + 2αyypy + βyp

2
y, (22)

to find the change in the action resulting from the emission of radiation:

dJy = −
(
αyypy + βyp

2
y

) dP

P0
. (23)
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Note that in (23) we neglect a term that is second order in dP/P0. This term vanishes in the classical
approximation when we consider the emission of an infinitesimal amount of radiation in an infinitesimal
time interval dt; however, we shall see later that including quantum effects, the second-order term will
lead to excitation of the action. Retaining for the present only the first-order term in dP/P0, averaging
(23) over all particles in the beam gives

〈dJy〉 = dεy = −εy
dP

P0
, (24)

where we have used

〈ypy〉 = −αyεy, (25)

〈p2y〉 = γyεy (26)

and
βyγy − α2

y = 1. (27)

The emittance is conserved under symplectic transport, so if the effects of radiation are ‘slow’
(i.e. the rate of change of energy from radiation is small compared to the total energy of a particle
divided by the revolution period), then for a particle in a storage ring we can average the momentum loss
around the ring. From (24),

dεy
dt

= − εy
T0

∮
dP

P0
≈ − U0

E0T0
εy = − 2

τy
εy, (28)

where T0 is the revolution period and U0 is the energy lost through synchrotron radiation in one turn.
The approximation is valid for an ultra-relativistic particle, which has E0 ≈ P0c. The damping time τy
is defined by

τy = 2
E0

U0
T0. (29)

The evolution of the emittance is given by

εy(t) = εy(t = 0) exp

(
−2

t

τy

)
. (30)

Typically, in an electron storage ring, the damping time is of order several tens of milliseconds, while the
revolution period is of order a microsecond. In such a case, radiation effects are indeed slow compared
to the revolution frequency.

Note that we made the assumption that the momentum of the particle was close to the reference
momentum, i.e. P ≈ P0. If the particle continues to radiate without any restoration of energy, we will
reach a point where this assumption is no longer valid. However, electron storage rings contain RF
cavities to restore the energy lost through synchrotron radiation. For a thorough analysis of synchrotron
radiation effects on the vertical motion (at least, with a classical model for the radiation), we should
consider the change in momentum of a particle as it moves through a RF cavity. However, in general,
RF cavities are designed to provide a longitudinal electric field. This means that particles experience
a change in longitudinal momentum as they pass through a cavity, without any change in transverse
momentum. In other words, the vertical momentum py of a particle will remain constant as the particle
moves through a RF cavity, which will therefore have no effect on the emittance of the beam.

To complete our calculation of the vertical damping time, we need to find the energy lost by a
particle through synchrotron radiation on each turn through the storage ring. At this point, we quote a
second result from the theory of synchrotron radiation: the radiation power from a relativistic particle
following a circular trajectory of radius ρ is given by Liénard’s formula [5]

Pγ =
q2c

6πε0

β4γ4

ρ2
=
Cγc

2π

c4P 4

ρ2
=
Cγ
2π
c5q2B2P 2 ≈ Cγ

2π
c3q2B2E2, (31)
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where the particle has charge q, velocity βc ≈ c, energy E = γmc2 and momentum P = βγmc. The
particle travels on a path with radius ρ in a magnetic field of strength B. The approximation in the final
expression of (31) is valid for ultra-relativistic particles, γ � 1. ε0 is the permittivity of free space and
Cγ is a physical constant given by

Cγ =
q2

3ε0(mc2)4
. (32)

For electrons, Cγ ≈ 8.846 × 10−5 m/GeV3. Note that the radiation power has a very strong scaling
with the particle mass: the larger the mass of the particle, the smaller the amount of radiation emitted.
In proton storage rings, except at extremely high energy, synchrotron radiation effects are generally
negligible. For a particle with the reference energy, travelling close to the speed of light along the
reference trajectory, we can find the energy loss by integrating the radiation power around the ring:

U0 =

∮
Pγ dt ≈

∮
Pγ

ds

c
. (33)

Using the expression (31) for Pγ , we find

U0 ≈
Cγ
2π
E4

0

∮
1

ρ2
ds, (34)

where ρ is the radius of curvature of the particle trajectory, and we assume that the particle energy is
equal to the reference energy E0. For convenience, we assume that the closed orbit is the same as the
reference trajectory for a particle with the reference momentum.

Following convention, we define the second synchrotron radiation integral, I2 [6]:

I2 =

∮
1

ρ2
ds. (35)

In the ultra-relativistic limit, the energy loss per turn U0 is written in terms of I2 as

U0 =
Cγ
2π
E4

0I2. (36)

Note that I2 is a property of the lattice (actually, a property of the reference trajectory), and does not
depend on the properties of the beam. Conventionally, there are five synchrotron radiation integrals
used to express the effects of synchrotron radiation on the dynamics of ultra-relativistic particles in an
accelerator. The first synchrotron radiation integral is not, however, directly related to the radiation
effects. It is defined as

I1 =

∮
ηx
ρ

ds, (37)

where ηx is the horizontal dispersion. I1 is related to the momentum compaction factor αp, which plays
an important role in the longitudinal dynamics, and describes the change in the length of the closed orbit
with respect to particle energy:

∆C

C0
= αpδ +O(δ2). (38)

The length of the closed orbit changes with energy because of dispersion in regions where the reference
trajectory has some curvature (see Fig. 5):

dC = (ρ+ x) dθ =

(
1 +

x

ρ

)
ds. (39)

If x = ηxδ, then

dC =

(
1 +

ηxδ

ρ

)
ds. (40)

The momentum compaction factor can be written

αp =
1

C0

dC

dδ

∣∣∣∣
δ=0

=
1

C0

∮
ηx
ρ

ds =
I1
C0
. (41)
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Fig. 5: Change in path length of a particle following a trajectory offset from the reference trajectory. If a particle
has coordinate x and follows a path parallel to the reference trajectory, then the length of the path followed by
the particle is dC = (1 + x/ρ)ds, where ρ is the radius of curvature of the reference trajectory and ds is the
corresponding distance along the reference trajectory.

2.3 Horizontal damping
Analysis of the effect of synchrotron radiation on the vertical emittance was relatively straightforward.
When we consider the horizontal emittance, there are three complications that we need to address. First,
the horizontal motion of a particle is often strongly coupled to the longitudinal motion. We cannot treat
the horizontal motion without also considering (to some extent) the longitudinal motion. Second, where
the reference trajectory is curved (usually, in dipoles), the length of the path taken by a particle depends
on the horizontal coordinate with respect to the reference trajectory. This can be a significant effect since
dipoles inevitably generate dispersion (a variation of the orbit with respect to changes in particle energy),
so the length of the path taken by a particle through a dipole will depend on its energy. Finally, dipole
magnets are sometimes built with a gradient, in which case the vertical field seen by a particle in a dipole
will depend on the horizontal coordinate of the particle.

Coupling between transverse and longitudinal planes in a beamline is usually represented by the
dispersion, ηx and ηpx, defined by

ηx =
dxco
dδ

∣∣∣∣
δ=0

, (42)

ηpx =
dpx,co

dδ

∣∣∣∣
δ=0

, (43)

where xco and px,co are the coordinate and momentum for a particle with energy deviation δ on a closed
orbit. We use the horizontal action-angle variables Jx and φx to describe the horizontal betatron oscil-
lations of a particle with respect to the dispersive closed orbit, i.e. the closed orbit for a particle with
energy deviation δ. In terms of the horizontal dispersion and betatron action, the horizontal coordinate
and momentum of a particle are given by

x =
√

2βxJx cosφx + ηxδ, (44)

px = −
√

2Jx
βx

(sinφx + αx cosφx) + ηpxδ. (45)

When a particle emits radiation, we have to take into account both the change in momentum of the
particle, and the change in coordinate and momentum with respect to the new (dispersive) closed orbit.
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Note that when we analysed the vertical motion, we assumed that there was no vertical dispersion. This
is the case in an ideal, planar storage ring, but, as we shall discuss later, alignment errors on the magnets
can lead to the generation of some vertical dispersion that depends on the errors, the effects of which
cannot always be neglected.

Taking all the above effects into account for the horizontal motion, we can proceed along the same
lines as for the analysis of the vertical emittance. That is, we first write down the changes in coordinate x
and momentum px resulting from an emission of radiation with momentum dP (taking into account the
additional effects of dispersion). Then, we substitute expressions for the new coordinate and momentum
into the expression for the horizontal betatron action, to find the change in action resulting from the
radiation emission. Averaging over all particles in the beam gives the change in the emittance that results
from radiation emission from each particle in the beam. Finally, we integrate around the ring (taking
account of changes in path length and field strength with the horizontal position in the bends) to find the
change in emittance over one turn.

Filling in the steps in this calculation, we proceed as follows. First, we note that, in the presence
of dispersion, the action Jx is written

2Jx = γxx̃
2 + 2αxx̃p̃x + βxp̃

2
x, (46)

where x̃ and p̃x are the horizontal coordinate and momentum with respect to the dispersive closed orbit:

x̃ = x− ηxδ, (47)

p̃x = px − ηpxδ. (48)

After emission of radiation carrying momentum dP , the variables change by

δ 7→ δ − dP

P0
, (49)

x̃ 7→ x̃+ ηx
dP

P0
, (50)

p̃x 7→ p̃x

(
1− dP

P0

)
+ ηpx

dP

P0
. (51)

We write the resulting change in the action as

Jx 7→ Jx + dJx. (52)

The change in the horizontal action is

dJx = −w1
dP

P0
+ w2

(
dP

P0

)2
, (53)

where, in the limit δ → 0,

w1 = αxxpx + βxp
2
x − ηx(γxx+ αxpx)− ηpx(αxx+ βxpx) (54)

and
w2 =

1

2

(
γxη

2
x + 2αxηxηpx + βxη

2
px

)
− (αxηx + βxηpx) px +

1

2
βxp

2
x. (55)

Treating radiation as a classical phenomenon, we can take the limit dP → 0 in the limit of small time
interval, dt → 0. In this approximation, the term that is second order in dP vanishes, and we can write
for the rate of change of the action

dJx
dt

= −w1
1

P0

dP

dt
≈ −w1

Pγ
P0c

, (56)
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where Pγ is the rate of energy loss of the particle through synchrotron radiation (31). To find the average
rate of change of horizontal action, we integrate over one revolution period:

dJx
dt

= − 1

T0

∮
w1

Pγ
P0c

dt. (57)

It is more convenient, given a particular lattice design, to integrate over the circumference of the ring,
rather than over one revolution period. However, we have to be careful changing the variable of integra-
tion (from time t to distance s) where the reference trajectory is curved:

dt =
dC

c
=

(
1 +

x

ρ

)
ds

c
. (58)

So,
dJx
dt

= − 1

T0P0c2

∮
w1Pγ

(
1 +

x

ρ

)
ds, (59)

where the rate of energy loss Pγ is given by (31).

We have to take into account the fact that, in general, the field strength in a dipole can vary with
position. To first order in x we can write

B = B0 + x
∂B

∂x
. (60)

Substituting (60) into (31), and with the use of (54), we find (after some algebra) that, averaging over all
particles in the beam, ∮ 〈

w1Pγ

(
1 +

x

ρ

)〉
ds = cU0

(
1− I4

I2

)
εx, (61)

where the energy loss per turn U0 is given by (36), the second synchrotron radiation integral I2 is given
by (35) and the fourth synchrotron radiation integral is I4:

I4 =

∮
ηx
ρ

(
1

ρ2
+ 2k1

)
ds. (62)

k1 is the normalized quadrupole gradient in the dipole field:

k1 =
q

P0

∂By
∂x

. (63)

Note that in (62), the dispersion and quadrupole gradient contribute to the integral only in the dipoles: in
other parts of the ring, where the beam follows a straight path, the curvature 1/ρ is zero.

Averaging (59) over all particles in the beam and combining with (61), we have

dεx
dt

= − 1

T0

U0

E0

(
1− I4

I2

)
εx. (64)

Defining the horizontal damping time τx,

τx =
2

jx

E0

U0
T0, (65)

where
jx = 1− I4

I2
, (66)

the evolution of the horizontal emittance can be written

dεx
dt

= − 2

τx
εx. (67)
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The quantity jx is called the horizontal damping partition number. For most synchrotron storage ring
lattices, if there is no gradient in the dipoles, then jx is very close to 1. From (67), the horizontal
emittance decays exponentially:

εx(t) = εx(t = 0) exp

(
−2

t

τx

)
. (68)

2.4 Longitudinal damping
So far we have considered only the effects of synchrotron radiation on the transverse motion, but there
are also effects on the longitudinal motion. Generally, synchrotron oscillations are treated differently
from betatron oscillations because, in one revolution of a typical storage ring, particles complete many
betatron oscillations but only a fraction of a synchrotron oscillation. In other words, the betatron tunes
are νβ � 1, but the synchrotron tune is νs � 1. To find the effects of radiation on synchrotron motion,
we proceed as follows. We first write down the equations of motion (for the dynamical variables z and δ)
for a particle performing synchrotron motion, including the radiation energy loss. Then, we express the
energy loss per turn as a function of the energy deviation of the particle. This introduces a damping term
into the equations of motion. Finally, solving the equations of motion gives synchrotron oscillations (as
expected) with amplitude that decays exponentially.

The changes in energy deviation δ and longitudinal coordinate z for a particle in one turn around
a storage ring are given by

∆δ =
qVRF

E0
sin
(
φs −

ωRFz

c

)
− U

E0
, (69)

∆z = −αpC0δ, (70)

where VRF is the RF voltage, ωRF is the RF frequency, E0 is the reference energy of the beam, φs is the
nominal RF phase and U (which may be different from U0) is the energy lost by the particle through
synchrotron radiation. Strictly speaking, since the longitudinal coordinate z is a measure of the time at
which a particle arrives at a particular location in the ring, changes in z with respect to energy should be
written in terms of the phase slip factor ηp, which describes the change in revolution period with respect
to changes in energy, rather than in terms of the momentum compaction factor αp. The phase slip factor
and the momentum compaction factor are related by (see for example [7])

ηp = αp −
1

γ20
, (71)

where γ0 is the relativistic factor for a particle with the reference momentum. But, for a storage ring
operating a long way above transition (which is the situation we shall assume here), αp � 1/γ20 , so
ηp ≈ αp. It is slightly more convenient to work with the momentum compaction factor, since this
depends (essentially) on just the geometry of the lattice and the optical functions (in particular, the
dispersion); whereas the phase slip factor depends also on the beam energy.

If the revolution period in the storage ring is T0, then we can write the longitudinal equations of
motion for the particle:

dδ

dt
=

qVRF

E0T0
sin
(
φs −

ωRFz

c

)
− U

E0T0
, (72)

dz

dt
= −αpcδ. (73)

To solve these equations, we have to make some assumptions. First, we assume that z is small compared
with the RF wavelength:

ωRF|z|
c
� 1. (74)
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The synchrotron radiation power produced by a particle depends on the energy of the particle. We assume
that the energy deviation is small, |δ| � 1, so we can work to first order in δ:

U = U0 + ∆E
dU

dE

∣∣∣∣
E=E0

= U0 + E0δ
dU

dE

∣∣∣∣
E=E0

. (75)

Finally, we assume that the RF phase φs is set so that for z = δ = 0, the RF cavity restores exactly
the amount of energy lost by synchrotron radiation. With these assumptions, the equations of motion
become

dδ

dt
= − qVRF

E0T0
cos(φs)

ωRF

c
z − 1

T0
δ

dU

dE

∣∣∣∣
E=E0

, (76)

dz

dt
= −αpcδ. (77)

Taking the derivative of (76) with respect to t, and substituting for dz/dt from (77), gives

d2δ

dt2
+ 2αE

dδ

dt
+ ω2

sδ = 0. (78)

This is the equation for a damped harmonic oscillator, with frequency ωs and damping constant αE given
by

ω2
s = −qVRF

E0
cos(φs)

ωRF

T0
αp, (79)

αE =
1

2T0

dU

dE

∣∣∣∣
E=E0

. (80)

If αE � ωs, the energy deviation and longitudinal coordinate damp as

δ(t) = δ0 exp(−αEt) sin(ωst− θ0), (81)

z(t) =
αpc

ωs
δ0 exp(−αEt) cos(ωst− θ0), (82)

where δ0 is a constant (the amplitude of the oscillation in δ at t = 0) and θ0 is a fixed phase (the phase
of the oscillation at t = 0).

To find an explicit expression for the damping constant αE , we need to know how the energy loss
per turn U depends on the energy deviation δ. The total energy lost per turn by a particle is found by
integrating the synchrotron radiation power over one revolution period:

U =

∮
Pγ dt. (83)

To convert this to an integral over the circumference, we should recall that the path length depends on
the energy deviation; so a particle with a higher energy takes longer to travel around the lattice:

dt =
dC

c
=

1

c

(
1 +

x

ρ

)
ds =

1

c

(
1 +

ηxδ

ρ

)
ds. (84)

Therefore, the radiation energy loss per turn is

U =
1

c

∮
Pγ

(
1 +

ηxδ

ρ

)
ds. (85)
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Using (31), we find after some algebra

dU

dE

∣∣∣∣
E=E0

= jz
U0

E0
, (86)

where U0 is given by (36), and the longitudinal damping partition number jz is

jz = 2 +
I4
I2
. (87)

I2 and I4 are the same synchrotron radiation integrals that we saw before, in (35) and (62). Finally, we
can write the longitudinal damping time:

τz =
1

αE
=

2

jz

E0

U0
T0. (88)

Neglecting coupling, the longitudinal emittance can be given by a similar expression to the hori-
zontal and vertical emittances:

εz =
√
〈z2〉〈δ2〉 − 〈zδ〉2. (89)

Even where dispersion is present, so that the horizontal and longitudinal motions are coupled, the expres-
sion (89) can provide a useful definition of the longitudinal emittance, since the longitudinal variables
usually have a much weaker dependence on the transverse variables than the transverse variables have
on the longitudinal. Since the amplitudes of the synchrotron oscillations decay with time constant τz , the
damping of the longitudinal emittance can be written

εz(t) = εz(t = 0) exp

(
−2

t

τz

)
. (90)

It is worth commenting on the fact that the horizontal, vertical and longitudinal emittances are
all damped by synchrotron radiation with exponential damping times that depend on the beam energy
and the rate at which particles lose energy through synchrotron radiation. In the case of the horizontal
and longitudinal emittances, there is an additional factor in the expressions for the damping times that
depends on details of the lattice or, more precisely, on the properties of the dipoles. The additional factors
are given by the damping partition numbers jx and jz . From (66) and (87), we see that

jx + jz = 3. (91)

In general, there can also be a vertical damping partition number jy, although in the simple case we have
considered here (of a perfectly planar storage ring) jy = 1. A more general analysis would lead to the
result

jx + jy + jz = 4, (92)

which is known as the Robinson damping theorem [8]. The significance of this result is that while it
is possible (for example, by changing the field gradient in the dipoles) to ‘shift’ the radiation damping
between the different degrees of freedom, the overall amount of damping is fixed. In a planar storage
ring, for example, one can reduce the horizontal damping time, but only at the expense of increasing the
longitudinal damping time.

In a typical storage ring, the dispersion in the dipoles is small compared to the bending radius of
the dipoles, that is

ηx
ρ
� 1. (93)

Then, if there is no quadrupole component in the dipoles (so that k1 = 0 in the dipoles), comparing (35)
and (62) leads to

I4
I2
� 1, (94)
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in which case

jx ≈ 1, (95)

jz ≈ 2. (96)

The horizontal damping time is approximately equal to the vertical damping time; the longitudinal damp-
ing time is about half the vertical damping time. Typical values for the damping times in medium-energy
synchrotron light sources are some tens of milliseconds, or a few thousand turns.

2.5 Quantum excitation
So far, we have assumed a purely classical model for the radiation, in which energy can be radiated
in arbitrarily small amounts. From the expressions for the evolutions of the emittances (30), (68) and
(90), we see that if radiation was a purely classical process, the emittances would damp towards zero.
However, quantum effects mean that radiation is emitted in discrete units (photons). As we shall see,
this induces some ‘noise’ on the beam, known as quantum excitation, the effect of which is to increase
the emittance. The beam in an electron (or positron) storage ring will eventually reach an equilibrium
distribution determined by a balance between the radiation damping and the quantum excitation. In the
remainder of this section, we shall derive expressions for the rate of quantum excitation and for the
equilibrium emittances in an electron storage ring.

In deriving the equation of motion (59) for the action of a particle emitting synchrotron radiation,
we made the (classical) approximation that in a time interval dt, the momentum dP of the radiation
emitted goes to zero as dt goes to zero. In reality, emission of radiation is quantized, so we are prevented
from taking the limit dP → 0. The equation of motion for the action (56) should then be written

dJx
dt

= − w1

P0c

∫ ∞

0
Ṅ(u)udu+

w2

P 2
0 c

2

∫ ∞

0
Ṅ(u)u2 du, (97)

where Ṅ(u) is the number of photons emitted per unit time in the energy range from u to u + du.
The first term on the right-hand side of (97) just gives the same radiation damping as in the classical
approximation; the second term is an excitation term that we previously neglected.

To find an explicit expression for the rate of change of the action in terms of the beam and lattice
parameters, we need to find expressions for the integrals

∫
Ṅ(u)udu and

∫
Ṅ(u)u2 du. The required

expressions can be found from the spectral distribution of synchrotron radiation from a dipole magnet,
which is another result that we quote from synchrotron radiation theory. The spectral distribution of
radiation from a dipole magnet is given by [5]

dP
dϑ

=
9
√

3

8π
Pγϑ

∫ ∞

ϑ
K5/3(x) dx, (98)

where dP/dϑ is the energy radiated per unit time per unit frequency range, and ϑ = ω/ωc is the radiation
frequency ω divided by the critical frequency ωc:

ωc =
3

2

γ3c

ρ
. (99)

Pγ is the total energy radiated per unit time (31) and K5/3(x) is a modified Bessel function. Since the
energy of a photon of frequency ω is u = ~ω, it follows that

Ṅ(u) du =
1

~ω
dP
dϑ

dϑ. (100)

Using (98) and (100), we find ∫ ∞

0
Ṅ(u)udu = Pγ (101)
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and ∫ ∞

0
Ṅ(u)u2 du = 2Cqγ

2E0

ρ
Pγ . (102)

Here Cq is a constant given by

Cq =
55

32
√

3

~
mc

. (103)

For electrons (or positrons) Cq ≈ 3.832× 10−13 m.

The next step is to substitute for the integrals in (97) from (101) and (102), substitute for w1 and
w2 from (54) and (55) and average over the circumference of the ring. This gives an expression for the
evolution of the horizontal action (for x� ηx and px � ηpx):

dεx
dt

= − 2

τx
εx +

2

jxτx
Cqγ

2 I5
I2
, (104)

where the fifth synchrotron radiation integral I5 is given by

I5 =

∮ Hx
|ρ3| ds. (105)

TheH function (Hx) is given by

Hx = γxη
2
x + 2αxηxηpx + βxη

2
px. (106)

The damping time and horizontal damping partition number are given, as before, by (65) and (66).
Note that the excitation term is independent of the emittance: the quantum excitation does not simply
modify the damping time, but leads to a non-zero equilibrium emittance. The equilibrium emittance ε0
is determined by the condition

dεx
dt

∣∣∣∣
εx=ε0

= 0, (107)

and is given by

ε0 = Cqγ
2 I5
jxI2

. (108)

Note that ε0 is determined by the beam energy, the lattice functions (Courant–Snyder parameters and
dispersion) in the dipoles and the bending radius in the dipoles. We shall discuss how the design of the
lattice affects the value of I5 (and, hence, the equilibrium horizontal emittance) in Section 3. The equi-
librium horizontal emittance (108) determined by radiation is sometimes called the natural emittance of
the lattice, since it includes only the most fundamental effects that contribute to the emittance: radiation
damping and quantum excitation. Other phenomena (such as impedance or scattering effects) can lead to
some increase in the equilibrium emittance actually achieved in a storage ring, compared to the natural
emittance. Typically, third generation synchrotron light sources have natural emittances of order a few
nanometres. With beta functions of a few metres, this implies horizontal beam sizes of tens of microns
(in the absence of dispersion).

In many storage rings, the vertical dispersion in the absence of alignment, steering and coupling
errors is zero, so that Hy = 0. However, the equilibrium vertical emittance is larger than zero, because
the vertical opening angle of the radiation excites some vertical betatron oscillations. The fundamental
lower limit on the vertical emittance, from the opening angle of the synchrotron radiation, is given by [9]:

εy =
13

55

Cq
jyI2

∮
βy
|ρ3| ds. (109)

In most storage rings, this is an extremely small value, typically four orders of magnitude smaller than
the natural (horizontal) emittance. In practice, the vertical emittance is dominated by magnet alignment
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Fig. 6: Change in longitudinal phase-space variables for a particle emitting a photon carrying energy u. As a result
of the photon emission, there is a change in amplitude of the synchrotron oscillations (represented by the ellipses)
performed by the particle as it moves around the storage ring.

errors. Storage rings typically operate with a vertical emittance that is of order 1% of the horizontal
emittance, but many can achieve emittance ratios somewhat smaller than this. We shall discuss the
vertical emittance in more detail in Section 4.

Quantum effects excite longitudinal emittance as well as transverse emittance. Consider a particle
with longitudinal coordinate z and energy deviation δ, which emits a photon of energy u (see Fig. 6).
The coordinate and energy deviation after emission of the photon are given by

δ′ = δ′0 sin θ′ = δ0 sin θ − u

E0
, (110)

z′ =
αpc

ωs
δ′0 cos θ′ =

αpc

ωs
δ0 cos θ. (111)

Therefore,

δ′20 = δ20 − 2δ0
u

E0
sin θ +

u2

E2
0

. (112)

Averaging over the bunch gives

∆σ2δ =
〈u2〉
2E2

0

, (113)

where
σ2δ = 〈δ2〉 =

1

2
〈δ20〉. (114)

Including radiation damping, the energy spread evolves as

dσ2δ
dt

=
1

2E2
0

1

C0

∮
dC

∫ ∞

0
du Ṅ(u)u2 − 2

τz
σ2δ , (115)

where we have averaged the radiation effects around the ring by integrating over the circumference.
Using (102) for

∫
Ṅ(u)u2 du, we find

dσ2δ
dt

= Cqγ
2 2

jzτz

I3
I2
− 2

τz
σ2δ . (116)

The equilibrium energy spread is given by dσ2δ/dt = 0:

σ2δ0 = Cqγ
2 I3
jzI2

, (117)
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where the third synchrotron radiation integral I3 is defined:

I3 =

∮
1

|ρ3| ds. (118)

The equilibrium energy spread σδ0 determined by radiation effects is often referred to as the natural
energy spread, since collective effects can often lead to an increase in the energy spread with increasing
bunch charge. Note that the natural energy spread is determined essentially by the beam energy and by
the bending radii of the dipoles; rather counterintuitively, it does not depend on the RF parameters (either
the voltage or the frequency). On the other hand, the bunch length does have a dependence on the RF.
The ratio of the bunch length σz to the energy spread σδ in a matched distribution (i.e. a distribution that
is unchanged after one complete revolution around the ring) can be determined from the shape of the
ellipse in longitudinal phase space followed by a particle obeying the longitudinal equations of motion
(72) and (73). Neglecting radiation effects (which can be assumed to be small), the result is

σz =
αpc

ωs
σδ. (119)

We can increase the synchrotron frequency ωs, and hence reduce the bunch length, by increasing the RF
voltage, or by increasing the RF frequency.

2.6 Summary of radiation damping and quantum excitation
To summarize, including the effects of radiation damping and quantum excitation, the emittances (in
each of the three degrees of freedom) evolve with time as

ε(t) = ε(t = 0) exp

(
−2

t

τ

)
+ ε(t =∞)

[
1− exp

(
−2

t

τ

)]
, (120)

where ε(t = 0) is the initial emittance (for example, of a beam as it is injected into the storage ring)
and ε(t = ∞) is the equilibrium emittance determined by the balance between radiation damping and
quantum excitation. The damping times are given by

jxτx = jyτy = jzτz = 2
E0

U0
T0, (121)

where the damping partition numbers are given by

jx = 1− I4
I2
, jy = 1, jz = 2 +

I4
I2
. (122)

The energy loss per turn is given by

U0 =
Cγ
2π
E4

0I2, (123)

where for electrons (or positrons) Cγ ≈ 8.846× 10−5 m/GeV3. The natural emittance is

ε0 = Cqγ
2 I5
jxI2

, (124)

where for electrons (or positrons) Cq ≈ 3.832 × 10−13m. The natural root mean square (r.m.s.) energy
spread and bunch length are given by

σ2δ = Cqγ
2 I3
jzI2

, (125)

σz =
αpc

ωs
σδ. (126)
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The momentum compaction factor is

αp =
I1
C0
. (127)

The synchrotron frequency and synchronous phase are given by

ω2
s = −qVRF

E0

ωRF

T0
αp cosφs, (128)

sinφs =
U0

qVRF
. (129)

Finally, the synchrotron radiation integrals are

I1 =

∮
ηx
ρ

ds, (130)

I2 =

∮
1

ρ2
ds, (131)

I3 =

∮
1

|ρ|3 ds, (132)

I4 =

∮
ηx
ρ

(
1

ρ2
+ 2k1

)
ds, k1 =

e

P0

∂By
∂x

, (133)

I5 =

∮ Hx
|ρ|3 ds, Hx = γxη

2
x + 2αxηxηpx + βxη

2
px. (134)

3 Equilibrium emittance and storage ring lattice design
In this section, we shall derive expressions for the natural emittance in four types of lattices: FODO,
DBA, MBA (including the triple-bend achromat) and TME lattices. We shall also consider how the
emittance of an achromat may be reduced by ‘detuning’ the lattice from the strict achromat conditions.

Recall that the natural emittance in a storage ring is given by (108)

ε0 = Cqγ
2 I5
jxI2

, (135)

where Cq is a physical constant, γ is the relativistic factor, jx is the horizontal damping partition number
and I5 and I2 are synchrotron radiation integrals. Note that jx, I5 and I2 are all fixed by the layout of the
lattice and the optics, and are independent of the beam energy. In most storage rings, if the bends have no
quadrupole component, the damping partition number jx ≈ 1. In that case, to find the natural emittance
we just need to evaluate the two synchrotron radiation integrals I2 and I5. If we know the strength and
length of all the dipoles in the lattice, it is straightforward to calculate I2. For example, if all the bends
are identical, then in a complete ring (total bending angle = 2π)

I2 =

∮
1

ρ2
ds =

∮
B

(Bρ)

ds

ρ
=

2πB

(Bρ)
≈ 2π

cB

E/q
, (136)

where E is the beam energy and q is the particle charge. Evaluating I5 is more complicated: it depends
on the lattice functions.

3.1 FODO lattice
Let us consider the case of a FODO lattice. The lattice functions in a typical FODO cell are shown
in Fig. 7. To simplify the system, we use the following approximations. First, we assume that the
quadrupoles can be represented by thin lenses. Second, we assume that the space between the quadrupoles
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Fig. 7: Lattice functions in a FODO cell. Top: Courant–Snyder parameters and dispersion. Bottom: H function.
In this case, the phase advance is 90◦; the dipoles are 1.5 m long and have bending angle 2π/32. Notice that the
value of theH function is constant except in the dipoles: this is a general property of this function.

is completely filled by the dipoles. This is clearly not a realistic assumption, but it does allow us to de-
rive some useful (and reasonably accurate) formulas. With these approximations, the lattice functions
(Courant–Snyder parameters and dispersion) are completely determined by the focal length f of the
quadrupoles and the bending radius ρ and length L of the dipoles, and can be calculated using standard
techniques.

Suppose that Rcell is the transfer matrix for the horizontal motion in one complete periodic cell of
a lattice. Rcell may be constructed by multiplying the transfer matrices R for individual components in
the beamline. For example, for a thin quadrupole of focal length f ,

Rquad =

(
1 0
−1/f 1

)
. (137)
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For a dipole of bending radius ρ and length L, the transfer matrix is

Rdip =

(
cos Lρ ρ sin L

ρ

−1
ρ sin L

ρ cos Lρ

)
. (138)

The Courant–Snyder parameters at any point in the beamline can be found first by multiplying the transfer
matrices R for the individual components to give the transfer matrix Rcell for the periodic cell starting
from the chosen point, and then writing the complete transfer matrix in the form

Rcell =

(
cosµx + αx sinµx βx sinµx
−γx sinµx cosµx − αx sinµx

)
, (139)

where µx is the phase advance. The dispersion describes the periodic trajectory of an (off-energy) particle
through a periodic cell, and can be found at any point by solving the condition

(
ηx
ηpx

)
= Rηcell

(
ηx
ηpx

)
+ dηcell, (140)

whereRηcell is a matrix representing the first-order terms in the map (for a complete cell) for the dispersion
and dηcell is a vector representing the zeroth-order terms. The map for a complete cell is found, as usual,
by composing the maps for individual elements. For a quadrupole, the map for the dispersion is the same
as the map for the dynamical variables; for a dipole, there are additional zeroth-order terms:

(
ηx
ηpx

)

s0+L

= Rdip

(
ηx
ηpx

)

s0

+

(
ρ(1− cos Lρ )

sin L
ρ

)
. (141)

Using the above results, we find that in terms of f , ρ and L, the horizontal beta function at the
horizontally focusing quadrupole in a FODO cell is given by

βx =
4fρ sin θ(2f cos θ + ρ sin θ)√

16f4 − [ρ2 − (4f2 + ρ2) cos 2θ]2
, (142)

where θ = L/ρ is the bending angle of a single dipole. The dispersion at a horizontally focusing
quadrupole is given by

ηx =
2fρ(2f + ρ tan θ

2)

4f2 + ρ2
. (143)

By symmetry, at the centre of a quadrupole, αx = ηpx = 0. Given the lattice functions at any point
in the lattice, we can evolve the functions through the lattice, using the transfer matrices R. For the
Courant–Snyder parameters,

A(s1) = RA(s0)R
T, (144)

where R = R(s1; s0) is the transfer matrix from s0 to s1, RT is the transpose of R and

A =

(
βx −αx
−αx γx

)
. (145)

The dispersion can be evolved (over a distance L, with constant bending radius ρ) using (141).

We now have all the information we need to find an expression for I5 in the FODO cell. However,
the algebra is rather formidable. The result is most easily expressed as a power series in the dipole
bending angle, θ:

I5
I2

=

(
4 +

ρ2

f2

)− 3
2
(

8− ρ2

2f2
θ2 +O(θ4)

)
. (146)
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Fig. 8: Ratio of synchrotron radiation integrals I5/I2 in a FODO cell, as a function of the phase advance. The
black line shows the exact value, while the red line shows the value calculated using the approximation (148).

For small θ, the expression for I5/I2 can be written

I5
I2
≈
(

1− ρ2

16f2
θ2
)(

1 +
ρ2

4f2

)− 3
2

=

(
1− L2

16f2

)(
1 +

ρ2

4f2

)− 3
2

. (147)

This can be further simplified if ρ� 2f (which is often the case):

I5
I2
≈
(

1− L2

16f2

)
8f3

ρ3
, (148)

and still further simplified if 4f � L (which is less often the case):

I5
I2
≈ 8f3

ρ3
. (149)

The ratio I5/I2 is plotted for a FODO cell as a function of the phase advance in Fig. 8. Making the
approximation jx ≈ 1 (since we assume that there is no quadrupole component in the dipole), and
writing ρ = L/θ, we have

ε0 ≈ Cqγ2
(

2f

L

)3
θ3. (150)

Notice how the emittance scales with the beam and lattice parameters. The emittance is propor-
tional to the square of the energy and to the cube of the bending angle. Increasing the number of cells
in a complete circular lattice reduces the bending angle of each dipole, and reduces the emittance. The
emittance is proportional to the cube of the quadrupole focal length: stronger focusing results in lower
emittance. Finally, the emittance is inversely proportional to the cube of the cell length.

The phase advance in a FODO cell is given by

cosµx = 1− L2

2f2
. (151)

This means that a stable lattice must have
f

L
≥ 1

2
. (152)
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In the limiting case, µx = 180◦, and f has the minimum value f = L/2. Using the approximation (150)
gives

ε0 ≈ Cqγ2
(

2f

L

)3
θ3, (153)

and so the minimum emittance in a FODO lattice is expected to be

ε0,FODO,min ≈ Cqγ2θ3. (154)

However, as we increase the focusing strength, the approximations we used to obtain the simple expres-
sion for ε0 start to break down. From the exact formula for I5/I2 as a function of the phase advance, we
find (by numerical means) that there is a minimum in the natural emittance at µx ≈ 137◦ ≈ 0.38×2π rad
(see Fig. 8). The minimum value of the natural emittance in a FODO lattice is given by

ε0,FODO,min ≈ 1.2Cqγ
2θ3. (155)

As an example, consider a storage ring with 16 FODO cells (32 dipoles), 90◦ phase advance per
cell (f = L/

√
2) and with a stored beam energy of 2 GeV. Using (150), we estimate that such a ring

would have a natural emittance of around 125 nm. Many modern applications (including synchrotron
light sources) demand emittances smaller than this by one or two orders of magnitude. This raises
the question of how we might design a lattice with a smaller natural emittance. Looking at the lattice
functions in a FODO lattice (Fig. 7) provides a clue. The dispersion function, which is directly related to
the effect of quantum excitation on the horizontal emittance, is non-zero throughout the cell. If we can
design a lattice where the dispersion vanishes at the entrance of a dipole, then we might hope to reduce
the average value of the H function in the dipoles, thereby reducing I5 and the value of the natural
emittance. It is indeed possible to design a cell with two dipoles, in which the dispersion vanishes at the
entrance of the first dipole and at the exit of the second dipole: such a cell is known as a Chasman–Green
cell [10] or a DBA.

3.2 Double-bend achromat lattice
To calculate the natural emittance in a DBA lattice, let us begin by considering the conditions for zero
dispersion at the start and the exit of a unit cell. Assume that the dispersion is zero at the start of the
cell. We place a quadrupole midway between the dipoles, to reverse the gradient of the dispersion. By
symmetry, the dispersion at the exit of the cell will then also be zero. In the thin-lens approximation, the
required strength of the quadrupole between the dipoles can be determined from

(
1 0
−1/f 1

)(
ηx
ηpx

)
=

(
ηx

ηpx − ηx
f

)
=

(
ηx
−ηpx

)
. (156)

Hence, the central quadrupole must have focal length

f =
ηx

2ηpx
. (157)

The actual value of the dispersion (and its gradient) is determined by the dipole bending angle θ, the
bending radius ρ and the drift length Ldrift:

ηx = ρ(1− cos θ) + Ldrift sin θ, (158)

ηpx = sin θ. (159)

To complete the DBA cell, we need to include some additional quadrupoles in the zero-dispersion
region to control the horizontal and vertical beta functions. To correct the chromaticity, sextupoles are
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Fig. 9: Lattice functions in a DBA cell. Top: Courant–Snyder parameters and dispersion. Bottom: H function.
The horizontal beta and alpha functions at the entrance of the first dipole have values βx = 2.08 m and αx = 2.47.
These are different from the ‘ideal’ values for low emittance in this case, of βx = 2.33 m and αx = 3.87. The
lattice functions are detuned from their ideal values in order to satisfy a range of constraints (such as maximum
values of the beta functions, magnet strengths and chromaticity). The detuning results in this case in an increase in
the natural emittance by a factor of 1.8.

included between the dipoles, where the dispersion is non-zero. The lattice functions in an example DBA
cell are shown in Fig. 9. To get some idea of whether this style of lattice is likely to have a lower natural
emittance than a FODO lattice, we can inspect the H function. Comparing Figs. 7 and 9, we see that
the H function is much smaller in the DBA lattice than in the FODO lattice. Note that we use the same
dipoles (bending angle and length) in both cases.

Let us calculate the minimum natural emittance of a DBA lattice, for given bending radius ρ and
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bending angle θ in the dipoles. To do this, we need to calculate the minimum value of

I5 =

∫ L

0

Hx
ρ3

ds (160)

in one dipole (of length L), subject to the constraints

ηx,0 = ηpx,0 = 0, (161)

where ηx,0 and ηpx,0 are the dispersion and gradient of the dispersion at the entrance of the dipole.
We know how the dispersion and the Courant–Snyder parameters evolve through the dipole, so we can
calculate I5 for one dipole, for given initial values of the Courant–Snyder parameters αx,0 and βx,0.
Then, we have to minimize the value of I5 with respect to αx,0 and βx,0. Again, the algebra is rather
formidable, and the full expression for I5 is not especially enlightening: therefore, we just quote the
significant results. We find that, for given ρ and θ and with the constraints (161), the minimum value of
I5 is given by

I5,min =
1

4
√

15

θ4

ρ
+O(θ6). (162)

This minimum occurs for values of the Courant–Snyder parameters at the entrance to the dipole given by

βx,0 =

√
12

5
L+O(θ3), (163)

αx,0 =
√

15 +O(θ2), (164)

where L = ρθ is the length of a dipole. Since we know that I2 in a single dipole is given by

I2 =

∫ L

0

1

ρ2
ds =

θ

ρ
, (165)

we can now write down an expression for the minimum emittance in a DBA lattice:

ε0,DBA,min = Cqγ
2 I5,min

jxI2
≈ 1

4
√

15
Cqγ

2θ3. (166)

The approximation is valid for small θ. Note that we have again assumed that, since there is no
quadrupole component in the dipole, jx ≈ 1.

Compare the expression (166) for the minimum emittance in a DBA lattice with the expression
(155) for the minimum emittance in a FODO lattice. We see that in both cases (FODO and DBA), the
emittance scales with the square of the beam energy, and with the cube of the bending angle. However,
the emittance in a DBA lattice is smaller than that in a FODO lattice (for given energy and dipole bending
angle) by a factor of 4

√
15 ≈ 15.5.

This is a significant improvement; however, there is still the possibility of reducing the natural
emittance (for a given beam energy and number of cells) even further. For a DBA lattice, we imposed
constraints (161) on the dispersion at the entrance of the first dipole in a lattice cell. To reach a lower
emittance, we can consider relaxing these constraints.

3.3 TME lattice
To derive the conditions for a TME lattice, we write down an expression for

I5 =

∫ L

0

Hx
ρ

ds, (167)
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with arbitrary dispersion ηx,0, ηpx,0 and Courant–Snyder parameters αx,0 and βx,0 in a dipole with given
bending radius ρ and angle θ (and length L = ρθ). Then, we minimize I5 with respect to ηx,0, ηpx,0,
αx,0 and βx,0. The result is [11]

ε0,TME,min ≈
1

12
√

15
Cqγ

2θ3. (168)

The minimum emittance is obtained with dispersion at the entrance to the dipole given by

ηx,0 =
1

6
Lθ +O(θ3), (169)

ηpx,0 = −θ
2

+O(θ3), (170)

and with Courant–Snyder functions at the entrance:

βx,0 =
8√
15
L+O(θ2), (171)

αx,0 =
√

15 +O(θ2). (172)

The dispersion and beta function reach minimum values in the centre of the dipole:

ηx,min = ρ

(
1− 2

θ
sin

(
θ

2

))
=
Lθ

24
+O(θ4), (173)

βx,min =
L

2
√

15
+O(θ2). (174)

By symmetry, we can consider a single TME cell to contain a single dipole, rather than a pair of dipoles
as was necessary for the DBA cell. Outside the dipole, the dispersion is relatively large. This is not ideal
for a light source, since insertion devices at locations with large dispersion will blow up the emittance.
If insertion devices are required, then it is possible to break the symmetry of the lattice to include zero-
dispersion straights: for example, the ring could have a race-track footprint, with arcs constructed from
TME cells.

Examples of the lattice functions (and H function) in a TME cell are shown in Fig. 10. Note that
the H function in the dipole in the TME cell is significantly lower than for FODO or DBA cells using
similar dipoles (Figs. 7 and 9).

3.4 Practical constraints on lattice optics
The results we have derived for the natural emittance in FODO, DBA and TME lattices have been for
‘ideal’ lattices that perfectly achieve the stated conditions in each case. In practice, lattices rarely, if
ever, achieve the ideal conditions. In particular, the beta function in an achromat is usually not optimal
for low emittance; and it is difficult to tune the dispersion for the ideal TME conditions. The main
reasons for this are: first, beam dynamics issues (relating, for example, to non-linear dynamics and
collective effects) often impose a variety of strong constraints on the design; and, second, optimizing
the lattice functions while respecting all the various constraints can require complex configurations of
quadrupoles. A particularly challenging constraint on design of a low-emittance lattice is the dynamic
aperture. Storage rings require a large dynamic aperture in order to achieve good injection efficiency and
good beam lifetime. However, low-emittance lattices generally need low dispersion and beta functions,
and hence require strong quadrupoles. As a result, the chromaticity can be large, and must be corrected
using strong sextupoles. Strong sextupoles lead to highly non-linear motion and a limited dynamic
aperture: the trajectories of particles at even quite modest betatron amplitudes or energy deviations can
become unstable, resulting in short beam lifetime.

Lattices composed of DBA cells have been a popular choice for third generation synchrotron light
sources. The DBA structure provides a lower natural emittance than a FODO lattice with the same
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Fig. 10: Lattice functions in a TME cell. Top: Courant–Snyder parameters and dispersion. Bottom: H function.
The horizontal beta function and dispersion match the ‘ideal’ values for low emittance.

number of dipoles, while the long, dispersion-free straight sections provide ideal locations for insertion
devices such as undulators and wigglers. If an insertion device, such as an undulator or a wiggler, is
incorporated in a storage ring at a location with large dispersion, then the dipole fields in the device
can make a significant contribution to the quantum excitation (I5). As a result, the insertion device can
lead to an increase in the natural emittance of the storage ring. By using a DBA lattice, dispersion-free
straights are naturally provided, in which undulators and wigglers can be located without blowing up the
natural emittance. However, there is some tolerance. In many cases, it is possible to detune the lattice
from the strict DBA conditions, thereby allowing some reduction in natural emittance at the cost of some
dispersion in the straights. The insertion devices will then contribute to the quantum excitation; but,
depending on the lattice and the insertion devices, there may still be a net benefit. Some light sources
that were originally designed with zero-dispersion straights take advantage of tuning flexibility to operate
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with non-zero dispersion in the straights (see for example [12]). This provides a lower natural emittance,
and better output for users.

3.5 Multibend achromats
There are of course many options for the design of a storage ring lattice, beyond the FODO, DBA
and TME cells we have discussed so far. For example, it is possible to combine the DBA and TME
lattices, constructing an arc cell consisting of more than two dipoles. The dipoles at either end of the cell
have zero dispersion (and gradient of the dispersion) at their outside faces, thus satisfying the achromat
condition. Since the lattice functions are different in the central dipoles compared to the end dipoles, we
have additional degrees of freedom we can use to minimize the quantum excitation. The result is a MBA
that combines the benefits of a DBA lattice (with long straights providing good locations for insertion
devices) and a TME lattice (providing the possibility of achieving lower emittance than in a DBA).

In a MBA, it is possible to have cases where the end dipoles and central dipoles differ in the
bend angle (i.e. length of dipole) and/or the bend radius (i.e. strength of dipole). For simplicity, let us
consider the case where the dipoles all have the same bending radius (i.e. they all have the same field
strength), but they vary in length. Assume that each arc cell has a fixed number M of dipoles, with
average bending angle θ = 2π/MNcells. If the two outer dipoles have bending angle aθ and the inner
dipoles have bending angle bθ, then the coefficients a and b satisfy

2a+ (M − 2)b = M. (175)

Let us assume that the lattice functions (Courant–Snyder parameters and dispersion) in the outer dipoles
are the same as in a DBA lattice, and in the inner dipoles are the same as in a TME lattice. Since the
synchrotron radiation integrals are additive, for an M -bend achromat, we can write

I5,cell ≈
2

4
√

15

(aθ)4

ρ
+

(M − 2)

12
√

15

(bθ)4

ρ
=

6a4 + (M − 2)b4

12
√

15

θ4

ρ
, (176)

I2,cell ≈ 2
aθ

ρ
+ (M − 2)

bθ

ρ
= (2a+ (M − 2)b)

θ

ρ
. (177)

Hence, in an M -bend achromat,

I5,cell

I2,cell
≈ 1

12
√

15

(
6a4 + (M − 2)b4

2a+ (M − 2)b

)
θ3. (178)

Minimizing the ratio I5/I2 with respect to a gives

a

b
=

1
3
√

3
, (179)

from which it follows that (
6a4 + (M − 2)b4

2a+ (M − 2)b

)
≈ M + 1

M − 1
. (180)

The central bending magnets should be longer than the outer bending magnets by a factor of 3
√

3. Then,
the minimum natural emittance in an M -bend achromat is given by

ε0,MBA,min ≈
1

12
√

15

(
M + 1

M − 1

)
Cqγ

2θ3. (181)

Note that θ is the average bending angle per dipole. Although we derived (181) with the assumption of
at least three dipoles (M > 2), the formula gives the correct result for a DBA in the case M = 2. Also,
in the limit M →∞, we obtain the correct expression for the natural emittance in a TME lattice.
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Table 1: Minimum natural emittance in different lattice styles for electron storage rings: for each lattice style, the
minimum natural emittance is given by FCqγ

2θ3, where Cq ≈ 3.832× 10−13 m and γ is the relativistic factor for
the beam. The dipoles have length L and bending angle θ, and no quadrupole component.

Lattice style F Conditions
90◦ FODO 2

√
2 f = L/

√
2

137◦ FODO 1.2 Minimum emittance FODO
DBA 1

4
√
15

ηx,0 = ηpx,0 = 0, βx,0 ≈
√

12/5L, αx,0 ≈
√

15

MBA 1
12
√
15

(
M+1
M−1

)
M dipoles (with same radius of curvature) per cell

TME 1
12
√
15

ηx,min ≈ Lθ
24 , βx,min ≈ L

2
√
15

Triple-bend achromats have been used in light sources, including the ALS [13] and the SLS [14].
Light sources based on cells with even larger numbers of bends per achromat are planned: see for exam-
ple [15]. As with DBAs, it is possible to obtain some reduction in the natural emittance of a triple (or
higher) bend achromat by detuning the lattice from the strict achromat condition, allowing some disper-
sion to ‘leak’ into the straight sections. As long as the dispersion in the straight sections is not too large,
there is a net benefit, despite some contribution to the emittance from quantum excitation in the insertion
devices.

As a final remark, we note that further flexibility to optimize the natural emittance can be provided
by relaxing the constraint that the field strength in a dipole is constant along the length of the dipole. We
expect an optimized design to have the strongest field at the centre of the dipole, where the dispersion
can be minimized. For an example, see [16].

A comparison of the minimum natural emittance for different types of lattices is shown in Table1.

4 Vertical emittance generation, calculation and tuning
In this section, we shall discuss how vertical emittance is generated by alignment and tuning errors,
describe methods for calculating the vertical emittance in the presence of known errors and discuss
briefly how an operating storage ring can be tuned to minimize the vertical emittance (even when the
alignment and tuning errors are not well known).

Recall that the natural (horizontal) emittance in a storage ring is given by (108)

ε0 = Cqγ
2 I5
jxI2

. (182)

If the horizontal and vertical motions are independent of each other (i.e. if there is no betatron coupling),
then we can apply the same analysis to the vertical motion as we did to the horizontal. If we build a ring
that is completely flat (i.e. no vertical bending), then there is no vertical dispersion, i.e. ηy = ηpy = 0 at
all locations around the ring. It follows that the verticalH functionHy given by

Hy = γyη
2
y + 2αyηyηpy + βyη

2
py (183)

also vanishes around the entire ring, and that therefore the synchrotron radiation integral I5y will be zero.
This implies that the vertical emittance will damp to zero.

However, in deriving Eq. (182) for the natural emittance, we assumed that all photons were emitted
directly along the instantaneous direction of motion of the electron. In fact, photons are emitted with
a distribution having angular width 1/γ about the direction of motion of the electron. This leads to
some vertical ‘recoil’ that excites vertical betatron motion, resulting in a non-zero vertical emittance. A
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detailed analysis leads to the following formula for the fundamental lower limit on the vertical emittance
[9]:

εy,min =
13

55

Cq
jyI2

∮
βy
|ρ|3 ds. (184)

To estimate a typical value for the lower limit on the vertical emittance, let us write Eq. (184) in the
approximate form

εy,min ≈
Cq〈βy〉
4jyI2

∮
1

|ρ|3 ds =
〈βy〉

4

jz
jy

σ2δ
γ2
, (185)

where 〈βy〉 is the average vertical beta function around the ring. Using some typical values (〈βy〉 = 20 m,
jz = 2, jy = 1, σδ = 10−3, γ = 6000), we find

εy,min ≈ 0.3 pm. (186)

The lowest vertical emittance achieved so far in a storage ring is around a picometre, several times
larger than the fundamental lower limit (see for example [17, 18]). In practice, vertical emittance in a
(nominally planar) storage ring is dominated by two effects: residual vertical dispersion, which couples
longitudinal and vertical motions; and betatron coupling, which couples horizontal and vertical motions.
The dominant causes of residual vertical dispersion and betatron coupling are magnet alignment errors,
in particular: tilts of the dipoles around the beam axis; vertical alignment errors on the quadrupoles; tilts
of the quadrupoles around the beam axis; and vertical alignment errors of the sextupoles. Let us consider
these errors in a little more detail.

Steering errors lead to a distortion of the closed orbit, which generates vertical dispersion and
(through vertical offsets of the beam in the sextupoles) betatron coupling. A vertical steering error may
be generated by rotation of a dipole, so that the field is not exactly vertical, or by vertical misalignment
of a quadrupole, so that there is a horizontal magnetic field at the location of the reference trajectory.

Coupling errors lead to a transfer of horizontal betatron motion and dispersion into the vertical
plane: in both cases, the result is an increase in vertical emittance. Coupling may result from rotation
of a quadrupole, so that the field contains a skew component. When particles pass through a skew
quadrupole, they receive a vertical kick that depends on their horizontal offset. As a result, quantum
excitation of the horizontal emittance feeds into the vertical plane.

A vertical beam offset in a sextupole has the same effect as a skew quadrupole. To understand
this, recall that a sextupole field is given by

Bx = (Bρ)k2xy, (187)

By =
1

2
(Bρ)k2

(
x2 − y2

)
. (188)

A vertical offset can be represented by the transformation y 7→ y + ∆y:

Bx 7→ (Bρ)k2xy + (Bρ)k2∆y x, (189)

By 7→
1

2
(Bρ)k2

(
x2 − y2

)
− (Bρ)k2∆y y −

1

2
k2∆y

2. (190)

The terms in (189) and (190) that are first order in ∆y constitute a skew quadrupole of strength (Bρ)k2∆y.

When designing and building a storage ring, we need to know how accurately the magnets must be
aligned, to keep the vertical emittance below some specified limit. Although beam-based tuning methods
also normally have to be applied, the ultimate emittance achieved after machine tuning does depend on
the accuracy with which the initial alignment is performed. It is therefore useful to have expressions
that relate the closed orbit distortion, vertical dispersion, betatron coupling and (ultimately) the vertical
emittance to the alignment errors on the magnets.
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Fig. 11: Closed orbit distortion from a thin dipole kick in a synchrotron storage ring. If the coordinate and
momentum of a particle on the closed orbit immediately after the dipole kick are (y0, py0), then, after nearly one
complete turn, just before the dipole kick the coordinate and momentum of the particle are (y0, py0 − ∆θ). The
dipole kick then puts the particle back onto the closed orbit.

4.1 Closed orbit distortion
Let us begin by considering the closed orbit distortion. In terms of the action-angle variables, we can
write the coordinate and momentum of a particle at any point:

y =
√

2βyJy cosφy, (191)

py = −
√

2Jy
βy

(sinφy + αy cosφy) . (192)

Suppose there is a steering error at some location s = s0 which leads to an instantaneous change (i.e.
a ‘kick’) ∆θ in the vertical momentum. After one complete turn of the storage ring, starting from
immediately after s0, the trajectory of a particle will close on itself if

√
2βy0Jy0 cosφy1 =

√
2βy0Jy0 cosφy0, (193)

−
√

2Jy0
βy0

(sinφy1 + αy0 cosφy1) = −
√

2Jy0
βy0

(sinφy0 + αy0 cosφy0)−∆θ,

(194)

where φy1 = φy0 + 2πνy and νy = µy/2π is the vertical tune (see Fig. 11). Solving Eqs. (193) and
(194) for the action and angle at s0,

Jy0 =
βy0∆θ

2

8 sin2 πνy
, (195)

φy0 = πνy. (196)

Note that if the tune is an integer, there is no solution for the closed orbit: even the smallest steering error
will kick the beam out of the ring. From (196), we can write the coordinate for the closed orbit at any
point in the ring:

yco(s) =

√
βy(s0)βy(s)

2 sinπνy
∆θ cos(πνy + µy(s; s0)) , (197)

where µy(s; s0) is the phase advance from s0 to s.

In general, there will be many steering errors distributed around a storage ring. The closed orbit
can be found by summing the effects of all the steering errors:

yco(s) =

√
βy(s)

2 sinπνy

∮ √
βy(s′)

dθ

ds′
cos
(
πνy + µy(s; s

′)
)

ds′. (198)

It is often helpful to be able to estimate the size of the closed orbit distortion that may be expected
from random quadrupole misalignments of a given magnitude. We can derive an expression for this from
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Fig. 12: Simulation of closed orbit distortion resulting from quadrupole alignment errors in a storage ring [19].
Each circle shows the mean of the r.m.s. orbit distortion from 100 different sets (seeds) of random alignment
errors on the quadrupoles; the error bars show the range covered by 90% of the seeds. The solid red line shows a
linear fit to the circles; the broken red line shows an analytical estimate of the orbit distortion based on the known
quadrupole strengths and lattice functions, using Eq. (200).

Eq. (198). For a quadrupole of integrated focusing strength k1L, vertically misaligned from the reference
trajectory by ∆Y , the steering is

∆θ = (k1L)∆Y. (199)

Squaring Eq. (198) and then averaging over many seeds of random alignment errors (see Fig. 12), we
find 〈

y2co(s)

βy(s)

〉
=
〈∆Y 2〉

8 sin2 πνy

∑

quads

βy(k1L)2. (200)

In performing the average, we assume that the alignments of different quadrupoles are not correlated in
any way.

The ratio between the closed orbit r.m.s. and the magnet misalignment r.m.s. is sometimes known
as the orbit amplification factor. Values for the orbit amplification factor are typically in the range from
10 to about 100. Of course, the amplification factor is a statistical quantity: the actual r.m.s. of the orbit
distortion depends on the particular set of alignment errors present.

In the context of low-emittance storage rings, vertical closed orbit errors are of concern for two
reasons. First, vertical steering generates vertical dispersion, which is a source of vertical emittance.
Second, vertical orbit errors contribute to vertical beam offset in the sextupoles, which effectively gen-
erates skew quadrupole fields, which in turn lead to betatron coupling. We have seen how to analyse the
beam dynamics to understand the closed orbit distortion that arises from quadrupole alignment errors of
a given magnitude. Our goal is to relate quantities such as orbit distortion, vertical dispersion, coupling
and vertical emittance to the alignment errors on the magnets. We continue with betatron coupling.

4.2 Betatron coupling
Betatron coupling describes the effects that can arise when the vertical motion of a particle depends on
its horizontal motion, and vice versa. Betatron coupling can arise (for example) from skew quadrupoles
and solenoids.
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In a storage ring, skew quadrupole fields often arise from quadrupole tilts, and from vertical align-
ment errors on sextupoles. A full treatment of betatron coupling can become quite complex, and there are
many different formalisms that can be used. However, it is possible to use a simplified model to derive
approximate expressions for the equilibrium emittances in the presence of coupling. The procedure is as
follows. First, we write down the equations of motion for a single particle in a beamline containing cou-
pling. Then, we look for a ‘steady state’ solution to the equations of motion, in which the horizontal and
vertical actions are each constants of the motion. Finally, we assume that the actions in the steady state
solution correspond to the equilibrium emittances (since ε = 〈J〉), and that the sum of the horizontal
and vertical emittances is equal to the natural emittance of the ‘ideal’ lattice (i.e. the natural emittance
of the lattice in the absence of errors). This procedure can give some useful results, but, because of the
approximations involved, the formulas are not always very accurate.

We will use Hamiltonian mechanics. In this formalism, the equations of motion for the action-
angle variables (with path length s as the independent variable) are derived from the Hamiltonian

H = H(φx, Jx, φy, Jy; s), (201)

using Hamilton’s equations

dJx
ds

= − ∂H
∂φx

, (202)

dJy
ds

= − ∂H
∂φy

, (203)

dφx
ds

=
∂H

∂Jx
, (204)

dφy
ds

=
∂H

∂Jy
. (205)

For a particle moving along a linear, uncoupled beamline, the Hamiltonian is

H =
Jx
βx

+
Jy
βy
. (206)

The first step is to derive an appropriate form for the Hamiltonian in a storage ring with skew
quadrupole perturbations. In Cartesian variables, the equations of motion in a skew quadrupole can be
written

dpx
ds

= ksy, (207)

dpy
ds

= ksx, (208)

dx

ds
= px, (209)

dy

ds
= py, (210)

where
ks =

1

Bρ

∂Bx
∂x

. (211)

These equations can be derived from the Hamiltonian

H =
1

2
p2x +

1

2
p2y − ksxy. (212)
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We are interested in the case where there are skew quadrupoles distributed around a storage ring.
The ‘focusing’ effect of a skew quadrupole is represented by a term in the Hamiltonian:

ksxy = 2ks
√
βxβy

√
JxJy cosφx cosφy. (213)

This implies that the Hamiltonian for a beamline with distributed skew quadrupoles can be written

H =
Jx
βx

+
Jy
βy
− 2ks(s)

√
βxβy

√
JxJy cosφx cosφy. (214)

The beta functions and the skew quadrupole strength are functions of the position s. This makes it
difficult to solve the equations of motion exactly. Therefore, we simplify the problem by ‘averaging’ the
Hamiltonian:

H = ωxJx + ωyJy − 2κ̄
√
JxJy cosφx cosφy. (215)

Here, ωx, ωy are the phase advances per unit length of the beamline, given by

ωx,y =
1

C0

∫ C0

0

ds

βx,y
, (216)

where C0 is the circumference of the ring. κ̄ is a constant that characterizes the coupling strength. For
reasons that will become clear shortly, we rewrite the coupling term, to put the Hamiltonian in the form

H = ωxJx + ωyJy − κ̄−
√
JxJy cos(φx − φy)− κ̄+

√
JxJy cos(φx + φy). (217)

The constants κ̄± represent the skew quadrupole strength averaged around the ring. However, we need
to take into account that the kick from a skew quadrupole depends on the betatron phase. Thus, we write

κ̄±eiχ =
1

C0

∫ C0

0
ei(µx±µy)ks

√
βxβy ds, (218)

where µx and µy are the betatron phase advances from the start of the ring.

Now suppose that κ̄− � κ̄+. (This can occur, for example, if ωx ≈ ωy, in which case all the
contributions to κ̄− from the skew quadrupole perturbations will add together in phase.) Then, we can
simplify things further by dropping the term in κ̄+ from the Hamiltonian:

H = ωxJx + ωyJy − κ̄−
√
JxJy cos(φx − φy). (219)

We can now write down the equations of motion:

dJx
ds

= − ∂H
∂φx

= κ̄−
√
JxJy sin(φx − φy), (220)

dJy
ds

= − ∂H
∂φy

= −κ̄−
√
JxJy sin(φx − φy), (221)

dφx
ds

=
∂H

∂Jx
= ωx +

κ̄−
2

√
Jx
Jy

cos(φx − φy), (222)

dφy
ds

=
∂H

∂Jy
= ωy +

κ̄−
2

√
Jy
Jx

cos(φx − φy). (223)

Even after all the simplifications we have made, the equations of motion are still rather difficult to
solve. Fortunately, however, we do not require the general solution. In fact, we are only interested in the
properties of some special cases. First of all, we note that from (220) and (221)

dJx
ds

+
dJy
ds

= 0, (224)
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Fig. 13: Variation of the ‘fixed point’ actions (227) and (228) as a function of the strength of the coupling reso-
nance.

and therefore the sum of the actions Jx + Jy is constant. Going further, we notice that if φx = φy, then
the rate of change of each action falls to zero. This implies that if we can find a solution to the equations
of motion with φx = φy for all s, then the actions will remain constant. In fact, we find that if φx = φy
and

dφx
ds

=
dφy
ds

, (225)

then

Jy
Jx

=

√
1 + κ̄2−/∆ω2 − 1

√
1 + κ̄2−/∆ω2 + 1

, (226)

where ∆ω = ωx − ωy. If we further use Jx + Jy = J0, where J0 is a constant, then we have a solution
to the equations of motion in which the actions are constant, and given by

Jx =
1

2


1 +

1√
1 + κ̄2−/∆ω2


 J0, (227)

Jy =
1

2


1− 1√

1 + κ̄2−/∆ω2


 J0. (228)

Note the behaviour, shown in Fig. 13, of the fixed actions as we vary the ‘coupling strength’ κ̄−
and the betatron tunes (betatron frequencies). The fixed actions are well separated for κ̄− � ∆ω, but
both approach the value J0/2 for κ̄− � ∆ω. The condition at which the tunes are equal (or differ by an
exact integer) is known as the difference coupling resonance.

Recall that the emittance may be defined as the betatron action averaged over all particles in the
beam:

εx = 〈Jx〉 and εy = 〈Jy〉. (229)

Now, synchrotron radiation will damp the beam towards an equilibrium distribution. In this equilibrium,
we expect the betatron actions of the particles to change only slowly, i.e. on the time-scale of the radiation
damping, which is much longer than the time-scale of the betatron motion. In that case, the actions of
most particles must be in the correct ratio for a fixed point solution to the equations of motion. Then, if
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Fig. 14: Effect of a single skew quadrupole (at a location with zero dispersion) on the vertical emittance in a
synchrotron storage ring, as a function of the difference in the betatron tunes. The circles show the results of a
computation using Chao’s method [21]; the red line shows an analytical estimate using Eq. (231).

we assume that εx + εy = ε0, where ε0 is the natural emittance of the storage ring, we must have for the
equilibrium emittances

εx =


1 +

1√
1 + κ̄2−/∆ω2


 ε0

2
, (230)

εy =


1− 1√

1 + κ̄2−/∆ω2


 ε0

2
. (231)

As an illustration, we can plot the vertical emittance as a function of the ‘tune split’ ∆ν, in a
model of the ILC (International Linear Collider) damping rings, with a single skew quadrupole (located
at a point of zero dispersion, so as not to couple horizontal dispersion into the vertical plane) [19]. The
result is shown in Fig. 14. The tunes are controlled by adjusting the regular (normal) quadrupoles in the
lattice. The simulation results are based on emittance calculation using Chao’s method, which we shall
discuss later.

The presence of skew quadrupole errors in a storage ring affects the betatron tunes. To estimate
the size of the effect, we use the Hamiltonian (219). If we consider a particle close to the fixed point
solution, we can assume that φx = φy, so that the Hamiltonian becomes

H = ωxJx + ωyJy − κ̄−
√
JxJy. (232)

The normal modes describe motion that is periodic with a single well-defined frequency. In the absence
of coupling, the transverse normal modes correspond to motion in just the horizontal or vertical plane.
When coupling is present, the normal modes involve a combination of horizontal and vertical motions.

Let us write the Hamiltonian (232) in the form

H =
( √

Jx
√
Jy
)
A

( √
Jx√
Jy

)
, (233)

where

A =

(
ωx −1

2 κ̄−
−1

2 κ̄− ωy

)
. (234)
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Fig. 15: Effect of a single skew quadrupole (at a location with zero dispersion) on the measured betatron tunes
in a synchrotron storage ring, as a function of the difference in the betatron tunes in the absence of the skew
quadrupole. The circles show the results of a computation of the eigenvalues of the single-turn transfer matrix;
the solid lines show an analytical estimate using Eq. (236). The minimum difference between the measured tunes
gives the coupling strength in the ring.

The normal modes can be constructed from the eigenvectors of the matrix A; the frequency of each
mode is given by the corresponding eigenvalue. From the eigenvalues of A, we find that the normal
mode frequencies are

ω± =
1

2

(
ωx + ωy ±

√
κ̄2− + ∆ω2

)
. (235)

Hence, the tunes ν± are given (in terms of the tunes νx and νy in the absence of errors) by

ν± =
1

2

(
νx + νy ±

√
κ2 + ∆ν2

)
, (236)

where, from (218), κ = (C0/2π)κ̄− is given by

κeiχ =
1

2π

∫ C0

0
ei(µx−µy)ks

√
βxβy ds. (237)

The dependence of the tunes on the coupling strength provides a useful method for measuring the cou-
pling strength κ in a real lattice. The procedure is simple: a quadrupole (or combination of quadrupoles)
is used to change the tunes, and then the tunes are recorded and plotted as a function of quadrupole
strength. The minimum separation between the measured tunes gives the coupling strength. An exam-
ple (from simulation) is shown in Fig. 15. Of course, this procedure does not identify the source of
the coupling, or provide very much information as to an optimal correction (beyond the strength of a
skew quadrupole that may be required to achieve the correction, assuming that the skew quadrupole is
at the correct phase in the lattice). However, the technique can be useful to characterize the effect of a
correction that may need to be applied in several iterations.

Major sources of coupling in storage rings are quadrupole tilts and sextupole alignment. Using
the theory just outlined, we can estimate the alignment tolerances on these magnets, for given optics and
specified vertical emittance. Starting with Eq. (237), we first take the modulus squared and then use (for
a sextupole with vertical alignment error ∆YS) ks = k2∆YS and (for a quadrupole with tilt error ∆ΘQ)
ks = k1∆ΘQ. Assuming that there are no correlations between the errors, we find

〈κ2〉 ≈ 〈∆Y
2
S 〉

4π2

∑

sexts

βxβy(k2l)
2 +
〈∆Θ2

Q〉
4π2

∑

quads

βxβy(k1l)
2, (238)
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where 〈κ2〉 represents the mean value of the square of the coupling strength over a large number of sets
of random errors. Note that ∆YS is the beam offset from the centre of a sextupole: this includes the
effects of closed orbit distortion.

4.3 Vertical dispersion
Vertical emittance is generated by vertical dispersion as well as by betatron coupling. Vertical dispersion
is in turn generated by vertical closed orbit distortion (vertical steering), and coupling of horizontal
dispersion into the vertical plane by skew quadrupole fields. Our goal now is to estimate the amount of
vertical dispersion generated from magnet alignment errors; we can then estimate the contribution to the
vertical emittance.

The equation of motion for the vertical coordinate for a particle with momentum P is

d2y

ds2
=

Bx
(Bρ)

=
q

P
Bx. (239)

For small energy deviation δ, P is related to the reference momentum P0 by

P ≈ (1 + δ)P0. (240)

We can write for the horizontal field (to first order in the derivatives)

Bx ≈ B0x + y
∂Bx
∂y

+ x
∂Bx
∂x

. (241)

If we consider a particle following an off-momentum closed orbit, so that

y = ηyδ, (242)

x = ηxδ, (243)

then, combining the above equations, we find to first order in δ

d2ηy
ds2

− k1ηy ≈ −k0s + k1sηx. (244)

Equation (244) gives the ‘equation of motion’ for the dispersion. It is similar to the equation of
motion for the closed orbit:

d2yco
ds2

− k1yco ≈ −k0s + k1sxco. (245)

We can therefore immediately generalize the relationship (200) between the closed orbit and the quadrupole
misalignments, to find for the dispersion
〈
η2y
βy

〉
=
〈∆Y 2

Q〉
8 sin2 πνy

∑

quads

βy(k1L)2+
〈∆Θ2

Q〉
8 sin2 πνy

∑

quads

η2xβy(k1L)2+
〈∆Y 2

S 〉
8 sin2 πνy

∑

sexts

η2xβy(k2L)2. (246)

Here, we assume that the skew dipole terms k0s come from vertical alignment errors on the quadrupoles
with mean square 〈∆Y 2

Q〉, and that the skew quadrupoles k1s come from tilts on the quadrupoles with
mean square 〈∆Θ2

Q〉 and from vertical alignment errors on the sextupoles with mean square 〈∆Y 2
S 〉. We

assume that all alignment errors are uncorrelated.

The final step is to relate the vertical dispersion to the vertical emittance. This is not too difficult.
First, we can apply the formula (108) for the natural (horizontal) emittance to the vertical emittance:

εy = Cqγ
2 I5y
jyI2

, (247)
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where jy is the vertical damping partition number (usually, jy = 1), and the synchrotron radiation
integrals are given by

I5y =

∮ Hy
|ρ|3 ds (248)

and
I2 =

∮
1

ρ2
ds. (249)

The verticalH function is
Hy = γyη

2
y + 2αyηyηpy + βyη

2
py. (250)

If the vertical dispersion is generated randomly, then we can assume that it will not be correlated
with the curvature 1/ρ of the reference trajectory. (This is not the case for the horizontal dispersion.)
Then, we can write

I5y ≈ 〈Hy〉
∮

1

|ρ|3 ds = 〈Hy〉I3. (251)

Hence, for the vertical emittance,

εy ≈ Cqγ2〈Hy〉
I3
jyI2

. (252)

It is convenient to use (117) for the mean square energy spread, to give

εy ≈
jz
jy
〈Hy〉σ2δ . (253)

Now, note the similarity between the action:

2Jy = γyy
2 + 2αyypy + βyp

2
y (254)

and theH function:
Hy = γyη

2
y + 2αyηyηpy + βyη

2
py. (255)

This implies that we can write
ηy =

√
βyHy cosφηy (256)

and hence 〈
η2y
βy

〉
=

1

2
〈Hy〉. (257)

Combining equations (253) and (257) gives a useful (approximate) relationship between the vertical
dispersion and the vertical emittance:

εy ≈ 2
jz
jy

〈
η2y
βy

〉
σ2δ . (258)

Equation (246) tells us how the vertical dispersion depends on the magnet alignment, and Eq. (258)
tells us how the vertical emittance depends on the vertical dispersion. Simply combining these two
equations gives us an equation for the contribution of the vertical dispersion to the emittance, in terms of
the magnet alignment errors.

It should be remembered that the total vertical emittance is found by adding together the contribu-
tions from betatron coupling (Eqs. (231) and (238)) and vertical dispersion (Eqs. (246) and (258)). All
these expressions involve significant approximations. However, they can give results that agree reason-
ably well with more reliable methods: an example is shown in Fig. 16.

40

A. WOLSKI

284



Fig. 16: Simulation of vertical emittance resulting from sextupole alignment errors in a storage ring [19]. Each
circle shows the mean of the normalized vertical emittance (γεy) from 100 different sets (seeds) of random align-
ment errors on the sextupoles; the error bars show the range covered by 90% of the seeds. The solid red line shows
a quadratic fit to the circles; the broken red line (very close to the solid red line) shows an analytical estimate of
the emittance based on the known sextupole strengths and lattice functions, using Eqs. (231) and (238) to estimate
the coupling contribution, and Eqs. (246) and (258) to estimate the dispersion contribution.

4.4 Accurate computation of emittance
The formulas we have derived so far are useful for developing a ‘feel’ for how the vertical emittance
depends on magnet alignment errors, and for making rough estimates of the sensitivity to particular types
of error. For detailed studies, including modelling and simulations, we need more accurate formulas for
computing the vertical emittance in a storage ring with a given set of alignment errors. The calculations
involved then become quite complex, and need to be solved using a computer.

There are three methods commonly used for computing the equilibrium emittances in complex
lattices with known errors. First, there is a technique based on the usual formulas for the emittances
expressed in terms of the radiation integrals, but generalized to the normal modes (see for example
[20]). Second, there is Chao’s method [21], which involves integrating the eigenvectors of the single-
turn transfer matrix around the circumference of the ring. Finally, there is the ‘envelope’ method [22], in
which the second-order moments of the equilibrium beam distribution are first computed from the single-
turn transfer map (including radiation damping and quantum excitation); then the emittances are obtained
from the matrix describing the beam distribution. We shall discuss briefly each of these techniques in
turn.

First, we consider the method for computing the equilibrium emittances based on normal mode
analysis. Let us assume that we have a lattice code that will compute the symplectic single-turn transfer
matrix at any point in a given lattice. In general, the transfer matrix will have non-zero terms off the
block-diagonals: these terms represent coupling between the horizontal, vertical and longitudinal mo-
tions. The expression (182) we derived for the natural emittance assumed no betatron coupling, and that
the coupling between the horizontal and longitudinal motions was relatively weak. However, we can
generalize the formula to the case that betatron coupling is present. We still need to assume that the
longitudinal motion is weakly coupled to each of the transverse degrees of freedom (i.e. the horizontal
and vertical motions). In that case, we can consider separately the 4 × 4 single-turn transfer matrix R⊥
describing the transverse motion:

R =

(
R⊥ •
• R‖

)
. (259)
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Here R‖ is a 2 × 2 matrix describing the longitudinal motion, and we assume we can neglect the terms
represented by the bullets (•).

Now we look for a transformation, represented by a 4 × 4 matrix V , that puts R⊥ into block-
diagonal form, i.e. that ‘decouples’ the transverse motion:

R̃⊥ = V R⊥ V
−1 =

(
RI 0
0 RII

)
. (260)

HereRI andRII are 2×2 matrices describing betatron motion in a coordinate system in which the motion
appears uncoupled. There are various recipes for constructing the decoupling transformation V (which is
not unique): see for example [23,24]. Having obtained the matrices describing the uncoupled motion, we
can derive the Courant–Snyder parameters for the normal mode motion in the usual way. For example,
we can write

RII =

(
cosµII + αII sinµII βII sinµII
−γII sinµII cosµII − αII sinµII

)
, (261)

and similarly for mode I. We can also obtain the normal mode dispersion functions, by applying the trans-
formation V to a vector constructed from the dispersion functions in the original Cartesian coordinates.
Then, we can construct theH function for each mode; for example

HII = γIIη
2
II + 2αIIηIIηp,II + βIIη

2
p,II. (262)

Finally, we can write for the mode II emittance

εII = Cqγ
2 I5,II
I2 − I4,II

(263)

and similarly for mode I.

For many storage rings, Eq. (263) works well, and gives an accurate result. However, if there is
strong coupling between the transverse and the longitudinal motions (which can happen, for example, for
large values of the synchrotron tune), then the approximations needed to derive Eq. (263) start to break
down.

As an alternative to the normal mode analysis, we can consider Chao’s method [21] for computing
the emittances, which provides a formula that can be expressed in a convenient form, though it is not
always easy to apply. It is again based on the single-turn transfer matrix, but it is more accurate than the
‘decoupling’ method, since it uses the full 6 × 6 transfer matrix, and does not assume weak coupling
between the longitudinal and transverse motions. We do not explain here the physics behind the formula,
but simply quote the result:

εk = CL
γ5

cαk

∮ |Ek 5(s)|2
|ρ(s)|3 ds, (264)

where k = I, II, III is an index that specifies a particular degree of freedom, the eigenvalues of the
single-turn matrix including radiation damping are e−αk±2πiνk , Ek 5 is the fifth component of the kth

eigenvector of the symplectic single-turn matrix and

CL =
55

48
√

3

rc~
m
, (265)

where rc is the classical radius and m the mass of the particles in the beam.

Finally, we mention the envelope method [22]. Like Chao’s method, it gives accurate results for
the emittances even if there is strong coupling between all three degrees of freedom. The envelope
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method is based on finding the equilibrium beam distribution described by the Sigma matrix:

Σ =




〈x2〉 〈xpx〉 〈xy〉 〈xpy〉 〈xz〉 〈xδ〉
〈pxx〉 〈p2x〉 〈pxy〉 〈pxpy〉 〈pxz〉 〈pxδ〉
〈yx〉 〈ypx〉 〈y2〉 〈ypy〉 〈yz〉 〈yδ〉
〈pyx〉 〈pypx〉 〈pyy〉 〈p2y〉 〈pyz〉 〈pyδ〉
〈zx〉 〈zpx〉 〈zy〉 〈zpy〉 〈z2〉 〈zδ〉
〈δx〉 〈δpx〉 〈δy〉 〈δpy〉 〈δz〉 〈δ2〉



. (266)

This is a symmetric matrix, constructed from the second-order moments of all possible combinations
of the dynamical variables. For simplicity, we assume in what follows that the first-order moments
are all zero, i.e. that the closed orbit lies along the reference trajectory. However, the method is easily
generalized to include cases where there is closed orbit distortion. In the absence of coupling, the Sigma
matrix will be block-diagonal. We are interested in the more general case, where coupling is present.

Under a single turn around an accelerator, Σ transforms as

Σ 7→ RΣRT +D, (267)

where R is the single-turn transfer matrix (including radiation damping) and D is a constant matrix rep-
resenting the effects of quantum excitation. From knowledge of the properties of synchrotron radiation,
we can compute the matrices R and D for a given lattice design: this will be discussed further below,
where we shall give explicit expressions for the transfer matrices in a dipole, including radiation effects.

The equilibrium distribution Σeq has the property

Σeq = RΣeqR
T +D. (268)

For given R and D, we can solve Eq. (268) to find Σeq, and then from Σeq we can find the invariant
emittances, i.e. the conserved quantities under symplectic transport. For any beam distribution Σ, the
invariant emittances εk are given by

eigenvalues(ΣS) = ±iεk, (269)

where S is the antisymmetric block-diagonal matrix (9). To see that this is the case, consider the (simpler)
case of motion in one degree of freedom. The Sigma matrix in this case is

Σ =

(
〈x2〉 〈xpx〉
〈pxx〉 〈p2x〉

)
=

(
βx −αx
−αx γx

)
εx. (270)

In one degree of freedom, the matrix corresponding to (9) is

S =

(
0 1
−1 0

)
. (271)

Then, the eigenvalues of ΣS are±iεx. Now, we can show that (under certain assumptions) the emittance
is conserved as a bunch is transported along a beamline. In any number of degrees of freedom, the linear
transformation in phase-space coordinates of a particle in the bunch between two points in the beamline
can be represented by a matrix R:

~x 7→ R~x, (272)

where ~x is a vector whose components are the phase-space variables xi.

Now consider how the Sigma matrix transforms. The Sigma matrix can be written as the product
of the phase-space coordinates averaged over the bunch:

Σij = 〈xixj〉, (273)
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where Σij is the (i, j)th component of the Sigma matrix, and the xi are the dynamical variables. The
brackets 〈·〉 indicate an average over all particles in the bunch. Then, using (272), it follows that under a
transformation R of the dynamical variables, the Sigma matrix transforms as

Σ 7→ RΣRT. (274)

Since S is a constant matrix, it immediately follows that

ΣS 7→ RΣRTS. (275)

Then, using the fact that R is symplectic (8), we have

ΣS 7→ RΣSR−1. (276)

This is a similarity transformation of ΣS: the eigenvalues of any matrix are conserved under a similarity
transformation. Therefore, since the eigenvalues of ΣS give the emittance of the bunch, it follows that
the emittances are conserved under linear, symplectic transport.

This argument applies for any number of degrees of freedom. We define the matrix S in three
degrees of freedom by (9). The six eigenvalues of ΣS are then ±iεk, where k is an index ranging over
the different degrees of freedom. The quantities εk are all conserved under linear, symplectic transport.
Even if, as is generally the case, the Sigma matrix is not block-diagonal (i.e. if there is coupling present),
then we can still find three invariant emittances using this method, without any modification.

Neglecting radiation, if R is a (symplectic) matrix that represents the linear single-turn transfor-
mation at some point in a storage ring, then an invariant or ‘matched’ distribution is one that satisfies

Σ 7→ RΣRT = Σ. (277)

In general, all the particles in the bunch change position in phase space after one turn around the ring:
but, for a matched distribution, the second-order moments remain the same. Although this condition
determines the lattice functions (which can be found from the eigenvectors of ΣS), it is not sufficient to
determine the emittances. In other words, the matched distribution condition determines the shape of the
bunch, but not the size of the bunch. This makes sense: after all, in a proton storage ring, we can have
a matched bunch of any emittance. However, in an electron storage ring, we know that radiation effects
will damp the emittances to some equilibrium values. We shall now show how to apply the concept
of a matched distribution, when radiation effects are included, to find the equilibrium emittances in an
electron storage ring.

To account for radiation effects in an electron storage ring, we must make two modifications to the
single-turn transformation. First, the matrix R will no longer be symplectic: this accounts for radiation
damping. Second, as well as first-order terms in the transformation (represented by the matrix R), there
will be zeroth-order terms: these will correspond to the quantum excitation. The condition for a matched
distribution should then be written

Σ = RΣRT +D, (278)

where R and D are constant, non-symplectic matrices that represent the first-order and zeroth-order
terms in the single-turn transformation, respectively. Equation (278) is sufficient to determine the Sigma
matrix uniquely – in other words, using just this equation (with known R and D) we can find the bunch
emittances and the matched lattice functions.

The envelope method for finding the equilibrium emittances in a storage ring then consists of
three steps. First, we need to find the first-order terms R and zeroth-order terms D in the single-turn
transformation

Σ 7→ RΣRT +D. (279)
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In the second step, we use the matching condition (278) to determine the Sigma matrix. Then, in the
third and final step, we find the equilibrium emittances from the eigenvalues of ΣS.

Strictly speaking, since R is not symplectic, the emittances are not invariant as the bunch moves
around the ring. Therefore, we may expect to find a different emittance at each point around the ring.
However, if radiation effects are fairly small, then the variations in the emittances will also be small.

The transfer matrices R and D for an entire ring can be constructed from the transfer matrices
for individual components in the ring. As an example, we shall consider a thin ‘slice’ of a dipole.
This is an important case, since, in most storage rings, radiation effects are significant only in dipoles.
Furthermore, complete dipoles can be constructed by composing the maps for a number of slices. Hence,
once we have a map for a thin slice of a dipole, and knowing the usual (symplectic) transfer maps for
drift spaces, quadrupoles and RF cavities, we will be able to construct the map for one complete turn of
a storage ring, starting at any point.

Recall that the transformations for the phase-space variables in the emission of radiation carrying
momentum dP are

x 7→ x, (280)

px 7→
(

1− dP

P0

)
px, (281)

y 7→ y, (282)

py 7→
(

1− dP

P0

)
py, (283)

z 7→ z, (284)

δ 7→ δ − dP

P0
, (285)

where P0 is the reference momentum. In general, dP is a function of the coordinates. To find the trans-
formation matrices R and D, we find an explicit expression for dP/P0, and then write down the above
transformations to first order. For an ultra-relativistic particle, the momentum lost through radiation can
be expressed in terms of the synchrotron radiation power Pγ (energy loss per unit time):

dP

P0
≈ Pγ
E0

dt ≈ Pγ
E0

(
1 +

x

ρ

)
ds

c
, (286)

where ρ is the radius of curvature of the reference trajectory. The radiation power Pγ is given by (31). In
general, the dipole may have a quadrupole gradient, so the field is

B = B0 +B1x. (287)

Also, the particle may have some energy deviation, so the total energy is

E = E0(1 + δ). (288)

Substituting these expressions, we find (after some manipulation)

Pγ = c
Cγ
2π

(
1

ρ2
+ 2k1

x

ρ

)
(1 + δ)2E4

0 , (289)

where k1 is the normalized quadrupole gradient in the dipole:

k1 =
q

P0
B1. (290)

Hence, the normalized momentum loss may be written

dP

P0
≈ Cγ

2π

(
1

ρ2
+ 2k1

x

ρ

)(
1 +

x

ρ

)
(1 + δ)2E3

0 ds. (291)
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Expanding to first order in the phase-space variables, we can write

dP

P0
≈ Cγ

2π

E3
0

ρ2
ds+

Cγ
2π

(
1

ρ2
+ 2k1

x

ρ

)
E3

0

ρ
x ds+ 2

Cγ
2π

E3
0

ρ2
δ ds+O(x2) +O(δ2). (292)

Given the expression (292) for dP/P0, the transformations (280)–(285) become (to first order in
the dynamical variables)

x 7→ x, (293)

px 7→
(

1− Cγ
2π

E3
0

ρ2
ds

)
px, (294)

y 7→ y, (295)

py 7→
(

1− Cγ
2π

E3
0

ρ2
ds

)
py, (296)

z 7→ z, (297)

δ 7→
(

1− 2
Cγ
2π

E3
0

ρ2
ds

)
δ − Cγ

2π

(
1

ρ2
+ 2k1

x

ρ

)
E3

0

ρ
x ds− Cγ

2π

E3
0

ρ2
ds. (298)

The first-order terms give the components of Rdip(ds), the transfer matrix for a thin slice (length ds) of
a dipole. There is a zeroth-order term in the map for the dynamical variables that will contribute to (the
(6, 6) component of) Ddip(ds), which contains the zeroth-order terms in the transformation of the Sigma
matrix through a thin slice of a dipole. Since the (6, 6) component of Ddip(ds) represents the quantity
〈∆δ2〉, the contribution to this component from the zeroth-order term in (298) will be second order in ds.
We still have to take proper account of the quantum nature of the radiation. This will make an additional
contribution to Ddip(ds).

The zeroth-order term in the map for the Sigma matrix is given by

[
Ddip(ds)

]
66

=

〈(
dP

P0

)2〉
≈ 〈u

2〉
E2

0

, (299)

where 〈u2〉 is the mean square of the photon energy. Using (102), we find that, to zeroth order in the
phase-space variables, 〈(

dP

P0

)2〉
≈ 2Cqγ

2Cγ
2π

E3
0

ρ3
ds. (300)

Note that this term is first order in ds, whereas the contribution to Ddip(ds) that we found previously
was second order in ds. Hence, in the limit ds → 0, the latter contribution dominates over the previous
contribution.

Collecting the above results, and taking only dominant contributions in the limit ds→ 0, we find
that the radiation in a thin slice of a dipole has an effect on the Sigma matrix that can be represented by

Σ 7→ Rdip(ds)ΣRT
dip(ds) +Ddip(ds), (301)

where

Rdip(ds) =




1 0 0 0 0 0

0 1− Cγ
2π

E3
0
ρ2

ds 0 0 0 0

0 0 1 0 0 0

0 0 0 1− Cγ
2π

E3
0
ρ2

ds 0 0

0 0 0 0 1 0

−Cγ
2π

(
1
ρ2

+ 2k1

)
E3

0
ρ ds 0 0 0 0 1− 2

Cγ
2π

E3
0
ρ2

ds




(302)
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and

Ddip(ds) =




0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 2Cqγ
2Cγ
2π

E3
0
ρ3

ds



. (303)

To construct the full single-turn transformation, we need to compose the maps for all the elements
in the ring, including the radiation effects in the dipoles. It is straightforward to do this numerically using
a computer. However, some care is needed in handling the D matrices. For example, given the Sigma
matrix at a location s0, we find the Sigma matrix at a location s1 = s0 + ds from

Σ(s1) = R(s1; s0)Σ(s0)R
T(s1; s0) +D(s1; s0). (304)

Then the Sigma matrix at s2 is given by

Σ(s2) = R(s2; s1)Σ(s1)R
T(s2; s1) +D(s2; s1)

= R(s2; s0)Σ(s0)R
T(s2; s0) +R(s2; s1)D(s1; s0)R

T(s2; s1) +D(s2; s1). (305)

Hence,

R(s2; s0) = R(s2; s1)R(s1; s0), (306)

D(s2; s0) = R(s2; s1)D(s1; s0)R
T(s2; s1) +D(s2; s1). (307)

Continuing the process, we find

R(sn; s0) = R(sn; sn−1)R(sn−1; sn−2) · · ·R(s1; s0), (308)

D(sn; s0) =
n∑

r=1

R(sn; sr)D(sr; sr−1)RT(sn; sr). (309)

When composing the transfer maps for thin slices of a dipole, we have to remember to ‘interleave’ the
radiation maps with the usual symplectic transport map for a thin slice of a dipole.

The next step in finding the equilibrium emittances is to solve the matching condition (278) to find
the Sigma matrix for the equilibrium distribution. To do this (for given matrices R and D), we make use
of the eigenvectors U of R, and the diagonal matrix Λ constructed from the eigenvalues of R:

RU = ΛU. (310)

Defining Σ̃ and D̃ by

Σ = U Σ̃UT, (311)

D = UD̃UT, (312)

the solution for the Sigma matrix can be written

Σ̃ij =
D̃ij

1− ΛiΛj
. (313)

The above formulas enable us to find the matched (equilibrium) distribution Σ; the eigenvalues of ΣS
are then ±iεk, where εk are the emittances.
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The envelope method makes explicit the fact that vertical emittance is generated by coupling
between the vertical and longitudinal planes in regions where radiation is emitted (i.e. by vertical disper-
sion in dipoles), and by coupling between the vertical and horizontal planes in regions where radiation
is emitted (i.e. by betatron coupling in dipoles). Here, we need to be careful in the use of the term ‘cou-
pling’. In this context, coupling means the presence of non-zero components off the block-diagonals
in the single-turn matrix, R. Full characterization of the coupling requires complete specification of all
the components off the block-diagonals in R. Depending on these components, it is possible to have
coupling in a storage ring, and not generate any vertical emittance. For example, one could construct
a closed ‘coupling bump’ using sets of skew quadrupoles in a straight section in a storage ring. With
proper care in the design, outside the region between the skew quadrupoles, the vertical motion can be
completely decoupled from the horizontal and the longitudinal. Then, despite the presence of strong
coupling in some parts of the storage ring, the equilibrium vertical emittance will come only from the
opening angle of the cone describing the spatial distribution of the synchrotron radiation.

Numerical computational procedures (such as the envelope method) for finding the equilibrium
beam distribution in a storage ring are important because they provide ways to calculate the equilibrium
emittances in complex, coupled lattices. It is possible to include other non-symplectic effects in the
calculation (such as, for example, intrabeam scattering).

4.5 Ultra-low-emittance tuning
Often, coupling comes from magnet alignment errors, which will not be known completely in an oper-
ating machine. At the design stage, it is important to characterize the sensitivity of a lattice to magnet
alignment errors, particularly regarding the vertical emittance. Being able to compute the beam emit-
tances in a storage ring with coupling errors present makes it possible to simulate the effects of various
types and sizes of alignment error – and then to optimize the lattice design to minimize the sensitivity to
the likely errors. However, in practice, tuning a storage ring to achieve a vertical emittance of no more
than a few picometres (which may be required for some applications) is a considerable challenge, even
in a lattice designed so as to minimize the sensitivity to coupling errors. Accurate alignment (by survey)
of the magnets is always the first step in achieving ultra-low emittances; but beam-based tuning methods
will then also be needed.

A variety of beam-based methods for tuning storage rings have been developed over the years. A
typical procedure might look as follows:

1. Align the magnets by a survey of the ring. Typically, quadrupoles need to be aligned to better than
a few tens of microns, and sextupoles to better than a couple of hundred microns.

2. Determine the positions of the BPMs relative to the quadrupoles. This is known as ‘beam-based
alignment’ (see Fig. 17), and can be achieved by steering the beam to a position in each quadrupole
where changing the quadrupole strength has no effect on the orbit [25].

3. Correct the orbit (using steering magnets) so that it is as close as possible to the centres of the
quadrupoles.

4. Correct the vertical dispersion (using steering magnets and/or skew quadrupoles, and measuring
the dispersion at the BPMs) as close to zero as possible.

5. Correct the coupling, by adjusting skew quadrupoles so that an orbit ‘kick’ in one plane (from any
orbit corrector) has no effect on the orbit in the other plane.

Usually, the last three steps need to be iterated several (or even many) times.

Results from the tuning procedure described above can be limited by systematic errors in the
BPMs, which can affect dispersion and coupling measurements. A useful technique for overcoming
such limitations is to apply orbit response matrix analysis [26]. This can be used to determine a wide
range of magnet and diagnostics parameters, including coupling errors and BPM tilts. Although vertical
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Fig. 17: Beam-based alignment in a quadrupole. If the beam passes off-axis through a quadrupole magnet, then
varying the strength of the magnet changes the trajectory downstream of the magnet. A change in trajectory can be
observed in a beam position monitor (BPM). One method of beam-based alignment consists of steering the beam
(using upstream orbit corrector magnets) until changing the quadrupole strength has no effect on the beam position
observed in the BPM.

emittances of order 1 pm have now been achieved (representing an emittance ratio of less than 0.1%),
tuning an electron storage ring to operate in this regime still remains a challenging goal, requiring ex-
tensive work and application of a range of techniques to reduce errors. Even making measurements of
emittances less than a few picometres is not straightforward, and requires specialist instrumentation (see
for example [27]).
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